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Background. Binding of peptides to Major Histocompatibility Complex (MHC) molecules is the single most selective step in the
recognition of pathogens by the cellular immune system. The human MHC class | system (HLA-) is extremely polymorphic. The
number of registered HLA-I molecules has now surpassed 1500. Characterizing the specificity of each separately would be
a major undertaking. Principal Findings. Here, we have drawn on a large database of known peptide-HLA-I interactions to
develop a bioinformatics method, which takes both peptide and HLA sequence information into account, and generates
quantitative predictions of the affinity of any peptide-HLA-I interaction. Prospective experimental validation of peptides
predicted to bind to previously untested HLA-I molecules, cross-validation, and retrospective prediction of known HIV immune
epitopes and endogenous presented peptides, all successfully validate this method. We further demonstrate that the method
can be applied to perform a clustering analysis of MHC specificities and suggest using this clustering to select particularly
informative novel MHC molecules for future biochemical and functional analysis. Conclusions. Encompassing all HLA
molecules, this high-throughput computational method lends itself to epitope searches that are not only genome- and
pathogen-wide, but also HLA-wide. Thus, it offers a truly global analysis of immune responses supporting rational
development of vaccines and immunotherapy. It also promises to provide new basic insights into HLA structure-function
relationships. The method is available at http://www.cbs.dtu.dk/services/NetMHCpan.
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INTRODUCTION

Proteins are essential immune target structures. Being extremely
diverse, they constitute unique imprints of their source organisms
and provide-even at the peptide level-sufficient target identifica-
tion and discrimination (reviewed in [1]). The cytotoxic T
lymphocyte (CTL) arm of the T cell immune system represents
a prime example of peptides being used as immune targets. C'TL’s
are aimed at intracellular pathogens and obtain information on
the intracellular environment of our cells through a series of
cellular events involving HLA-I-mediated antigen processing and
presentation of peptide epitopes derived from the intracellular
protein metabolism, including that of intracellularly located
pathogens (reviewed in [2]). A detailed description of how the
immune system handles proteins and generates peptide could
enable scientists and clinicians to analyze any protein of interest
for the presence of potentially immunogenic CTL epitopes.
Scanning entire proteomes computationally should further enable
a rational approach to vaccine development, immunotherapy and
diagnostics. Thus, candidate epitopes might be predicted from the
various microbial genome projects, tumor vaccine candidates from
mRNA expression profiling of tumors (“transcriptomes”) and
auto-antigens from the human genome (reviewed in [1,3]).

The single most selective event in antigen processing and
presentation is that of peptide binding to HLA-L It has been
estimated that only 1 in 200 peptides will bind to a given MHC
class I molecule with sufficient strength to elicit an immune
response [2]. This makes it particularly important to establish
accurate descriptions and predictions of peptide binding to HLA-I
molecules [2]. It is not a simple task since the genes encoding HLA
proteins are extremely polymorphic giving rise to many different
peptide binding specificities being expressed in the human
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population. Sette and Sidney clustered HLA-I molecules into
supertypes [4,5] according to peptide binding specificities.
Although the HLA-I supertype concept does reduce the
complexity of the HLA-I system, there is still an unmet need to
increase the coverage of HLA-I specificities as most existing HLA-
I molecules have no or poorly characterized supertype relation-
ships. Furthermore, at the present rate of discovery of HLA
specificities, it would be a very demanding task to keep up with the
increasing number of registered HLA molecules. Clearly, there is
a need for a more efficient approach to analyze HLA-I
specificities.

The analysis of HLA-I specificities have classically entailed the
identification of peptide binding motifs (characterized primarily by
the requirement for a few properly spaced and essential primary
anchor residues) through pool sequencing of MHC eluted peptides
[6] and/or the generation of a representative set of peptide
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binding data [7,8]. Once such information has been obtained, the
next step has been to generate peptide-binding predictions using
either simple motif searches strategies [8] or complete statistical
matrices representing the frequency of each amino acid in each
position [9-13]. More recently, the growing amount of peptide-
binding data has supported the generation of more sophisticated
data-driven bioinformatics approaches including artificial neural
networks, hidden Markov models, and support vector machines
[14-20]. Artificial Neural Networks (ANN) are ideally suited to
recognize non-linear patterns, which are believed to contribute to
peptide-HLA-I interactions [15,16,21,22]. In an ANN, informa-
tion is trained and distributed into a computer network with an
input layer, hidden layers and an output layer all connected in
a given structure through weighted connections [23]. They are
trained to recognize inputs (e.g. peptide sequences) associated with
a given output (e.g. binding affinity). Once trained, the network
should recognize the complicated input patterns compatible with
binding. In a recent study, the ANN approach was found to be
a highly efficient prediction mechanism for peptide-HLA-I
Interactions [24].

In general, HLA-I binding predictions depend on sufficient
experimental data being available for the exact HLA-I molecule in
question. Unfortunately, less than 10% of the 1500 [25] registered
HLA-I proteins have been examined experimentally, and less than
5% have been characterized with more than 50 examples of
peptide binders [26,27]. Furthermore, focus has been towards the
most prevalent Caucasians HLA-I molecules, which are not
necessarily those prevalent among other populations, which are in
more urgent need of new vaccine initiatives. By way of example,
only two of the six HLA-A alleles, which are found with phenotype
frequencies above 10% in Sub-Saharan African populations, are
found above the 2-4% level in Caucasians; only three out of seven
HLA-A alleles, which are found with phenotype frequencies above
10% in South-East Asian populations, are found above the 1%
level in Caucasians; only three out of five HLA-A alleles, which are
found with phenotype frequencies above 10% in South-American
populations, are found above the 1% level in Caucasians etc. [28].
To overcome this problem, several (frequently computer intensive)
prediction algorithms have been proposed using the three
dimensional structure of the MHC molecule, and empirical or
semi-empirical force fields, to estimate the peptide-HLA-I binding
affinity [29-32]. Obviously, to extend this approach beyond the 17
HLA-I molecules currently solved at the structural level requires
some kind of structural modeling [33]. Searching for alternative
solutions, we here propose a novel method, NetAMHCpan, exploiting
both peptide and primary HLA sequence as input information for
ANN-driven predictions pooling all available data and at the same
time incorporate all HLA specificities. The method is successfully
demonstrated to predict the affinity of interaction of any peptide
with any human HLA-A or HLA-B molecule i.e. the method is
pan-specific. Where other groups earlier have suggested similar
prediction strategies to span limited regions of the HLA diversity
[34-36], to the best of our knowledge, this is the largest database
of HLA binding events ever used for this purpose, and the first
report describing predictors applicable to a complete analysis of all
HLA-A and -B specificities.

RESULTS

A large set of quantitative peptide-HLA binding data was used as
input to train the NetMHCpan method. Both peptide and HLA
primary sequences would subsequently be used as input for the
method, and as output one should retrieve the predicted peptide-
HLA-I binding affinity (for details see Materials and Methods).
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Experimental validation

A prospective validation was performed using NetMHCpan to
identify peptides, which would bind to HLA molecules that
specificity-wise were unknown to us. For each HLA molecule, the
binding affinity was predicted for a set of 500,000 random
nonameric peptides of pathogenic, or human, origin. Only
peptides predicted to bind with an affinity stronger than 50 nM
were selected, and from this set of predicted binders, a subset of
10-15 peptides with low mutual sequence similarity (i.e. avoiding
redundancy) was selected. These peptides were then tested for
binding to the relevant HLA molecule in an i vitro binding assay
[37]. More than 86% of the predictions were experimentally
confirmed as binders with Kp values below 500 nM (many
peptides bound with affinities better than 5 nM, see Figure 1).
Thus, the pan-specific prediction approach was capable of
extracting HLA sequence information and correctly relating this
to peptide binding even in the absence of any data for the specific
query HLA molecule.

Leave-one-out validation

The ultimate validation of the predictive performance of the pan-
specific approach is obtained by using the NetMHCpan method
to identify peptide binders for MHC molecules that are
specificity-wise unknown. This we have shown above for two
alleles HLA. As another evaluation of the predictive performance
of the pan-specific approach we performed a simulated ‘“blind”
leave-one-out validation. Here, we trained networks using all
data for the relevant loci, HLA-A or -B, except the data for the
molecule in question (i.e. a “leave-one-out” validation, here after
refereed to as Pan). This was done for all HLA molecules
represented in the data set. Thus, in this evaluation, no peptide-
HLA binding data from the validation set was included in the
training of the pan-specific predictor. For comparison, predic-
tions were also trained solely on peptide binding data (i.e.
without considering HLA sequence information) and using
conventional cross-validation (see Materials and Methods). For
each allele under consideration, we trained three such conven-
tional single allele cross-validated networks based on different sets
of peptide binding data: (1) data from the exact HLA molecule in
question (Self), (2) data from the most closely related HLA
molecule as identified by similarity between the HLA sequences
(Newghbor), and (3) data from a previously selected representative
of the HLA supertype [5] (Supertype; clearly this comparison
cannot include the representative itself).. This leave-one-out
experiment thus constitutes a highly rigorous validation of the
pan-specific method. By performing the leave-one-out experi-
ment of all 42 alleles included in the benchmark data set, we can
validate the performance of the NetMHCpan method on 42 alleles
with uncharacterized binding specificity.

Some highlights of the “leave-one-out” analysis are shown in
Table 1 (the complete data is given in Table S1). Perhaps not
surprising, Self often performed better than Pan. However, it is
noteworthy that all alleles, where Pan performed best, were
characterized by very little data (57 to 141 peptide data points)
being available. More pertinent for this work, however, Pan had
a significantly higher predictive performance than both the
Neighbor and Supertype methods (p<<0.005 in both cases). Plotting
the Pan performance against the distance between the query HLA
and its nearest neighbor (as determined from the similarity
between the two HLA sequences), it became apparent that the Pan
predictor performed better when the query HLA molecule was
represented by closely related HLA molecules (see Figure 2 and
Table S2).
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MHC allele A*8001 MHC allele A*7401
Sequence Kp-value (nM) Segquence Kp-value (nM)
SNASTLLY <1 1
WNQFTY <1 1
NGTWNY <1 3
LTAHYCFLY 1 3
GMFSWNLAY 3 4
LVFLGPGLY 6 10
MTDVDLNYY 10 12
(VIAATHNAY 36 14
SMIYFFHHY 1,454 63
LMDHWRGYK 16,543 188
LSNFGYPGY >50,000 402
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A*8001 A*7401
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Figure 1. Prospective validation using hitherto uncharacterized HLA
molecules. The upper figure gives the IC50 binding values for the sets of
peptides identified by the NetMHCpan method to bind two hitherto
uncharacterized HLA-A*8001, and HLA-A*7401 molecules. The peptides
were selected as described in the text. 86% of the tested peptides bind
stronger than 500 nM. The lower figure shows a Kullback-Leibler [52]
logo visualization of the HLA binding motifs as predicted by the
NetMHCpan method. Peptide binders used to generate the logos for each
HLA molecule were selected from a pool of 500,000 random natural
nonamers using the NetMHCpan method with a binding threshold of
500 nM. The logos were generated with the logo program of Schneider
and Stephens [53]. Note that the binding motifs visualized in the logo
plot are estimated from a set of approximately 5000 predicted binders,
whereas the validated peptides only make up of the top 0.2%.
doi:10.1371/journal.pone.0000796.g001

Examples of how HLA molecules, which are sparsely populated
in terms of available peptide binding data, can be represented by
related and well-populated HLA molecules is provided in
Table 1A. Here, the performances of Pan are much better than
those of the corresponding Self. In agreement, there are very few
peptide binding data points (between 51 and 141 data point) for
these HLA-A molecules, however, in total there are more than
11,000 data points for closely related HLA-A*02xx molecules.
How sparsely populated HLA molecules cannot serve as HLA
representatives is demonstrated in Table 1B. For HLA-A*2601 the
Pan method has a much lower performance than the Se/ffmethod,
whereas the converse is true for the closely related HLA-A*2602.
This is in agreement with the fact that HLA*2601 is well
populated with peptide binding data, whereas HLA-A*2602 is not.
There is thus sufficient HLA-A*2601 data to represent HLA-
A*2602, but not vice versa. A similar phenomenon can be
observed for HLA-B*5801 vs. HLA-B*5701 and HLA-B*4001
versus HLA-B*4402. As shown in Table 1C, the HLA-B*2705
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Self-performance is excellent, whereas the Pan, as well as Neighbor,
performances are appalling. This is in agreement with the amount
of data available; there are 1251 self-data points, but no clear
representative of HLA-B*2705 (the difference in HLA sequence to
the nearest neighbor is very high, see Figure 2 and Table S2).
Similar, although less dramatic, observations are made for HLA-
A*0101, and HLA-B*0702. Finally, HLA-A*6801 provides an
example of how the Pan-networks avoids completely misleading
Neighbor predictions (see Table S1). For HLA-A*6801, the nearest
neighbor is HLA-A*6802, however, using the HLA-A*6302
predictor as HLA-A*6801 representative had a very poor
predictive performance of —0.04. In contrast, the predictive
performance of the Pan-networks for HLA-A*6801 is 0.62.

A summary of the leave-one-out experiment is given in
Table 1D. For the HLA-A locus molecules, the Pan approach
performed slightly better than Se/f'and much better than Neighbor or
Supertype (P<<0.001), thus providing strong unbiased overall support
for the pan-specific approach. For the HLA-B locus molecules, the
Pan approach performed slightly poorer than Self, but still
significantly better than both the Neighbor, and Supertype approaches
(P<<0.005). The performance difference between HLA-A and -B
locus molecules is most likely the result of the more limited amount
of available HLA-B data trying to cover an even greater span of
sequence and binding motif diversities (i.e. see Figure 2, and the
fact that 7 HLA-B supertypes are defined as compared to 5 for the
HLA-A locus).

The final NetMHCpan predictors

Often small data sets contain a strong bias for both the negative
and positive data since the data was selected to fit some predicted
binding motif. One way to lower a potential bias in the negative
data set is to add random data with assumed weak binding affinity
values [18]. For HLA it is a reasonable assumption that randomly
chosen peptides will be non-binders, and the ANN methodology is
reasonably robust against the occasional error introduced. Thus,
for the remaining work, we added 100 random peptides to all data
sets. This did indeed improve all the predictions that depended
upon sparsely populated HLA representatives (e.g. Pan predictions
for HLA-A*2601 and HLA-B*5801). The predictive performance
for the leave-one-out pan-specific predictors trained including
added random negative data is shown in Table 2.

The final HLA-A and HLA-B pan-specific ANNs were trained
on the complete datasets in a fivefold cross-validated manner on
the complete data set abandoning the leave-one-out approach (see
Materials and Methods). The Pearson correlation [38] for each
HLA molecule was compared to that of the corresponding Self
networks. As illustrated in Table 3, the two approaches had
comparable predictive performance. As the pan-specific neural
network method demonstrates ability to encompass all HLA-A
and HLA-B molecules, we denote the final pan-specific methods,
NetMHC-pand, and NetMHCpanB, respectively.

We can estimate the sensitivity and specificity of the NetMHCpan
method from the predictions of the 37,384 peptide data included
in the benchmark. For a classification threshold of 500 nM, we
find that the method has a specificity of 0.95, and a sensitivity of
0.74. Further, we find that 83% of the predicted binders are
indeed experimentally verified binders. A complete table de-
scribing the relation between sensitivity and specificity is given in

Table S3.

Identification of HLA supertypes
The pan-specific approach relies on the ability of the neural
networks to capture general features of the relationship between
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Figure 2. Predictive performance of the NetMHCpan method as a function of the distance to its nearest neighbor HLA allele. The nearest
A,B

L, where s(A,B) is the

\/$(A,4)-5(B,B)
BLOSUMS50 alignment score [47] between the pseudo sequences for alleles A and B, respectively. HLA-A alleles are shown as solid circles. HLA-B
alleles are shown as +. The Pearson correlation coefficient between the pseudo sequence distance and the predictive performance for the 42 HLA
alleles included in the plot is 0.67. Note, that the distance measure inherently assumes that all residues are equally important and independent of the
pseudo sequence context. While this assumption is obviously inconsistent with the reality of primary anchors, it meets another essential requirement;

neighbor distance is estimated from the alignment score of the HLA pseudo sequences using the relation d=1—

it is simple and unbiased.
doi:10.1371/journal.pone.0000796.g002

peptides and HLA sequences, and interpret these in terms of
binding affinity. Having demonstrated the predictive strength of
the approach to identify the binding motif of uncharacterized
HLA molecules, we now used the pan-specific ANNs to cluster
HLA molecules according to predicted peptide binding specificity.
Pruned HLA distance trees were calculated as described in
Materials and Methods. Figure 3A depicts a tree including 36
representatives of the currently known HLA-A molecules, and
Figure 3B a tree including 51 representatives of the known HLA-B
molecules. The overall structure of the two new trees is in
accordance with the supertype clustering proposed earlier by Sette
and Sidney [4] and later extended by Lund et al, [5] according to
which the HLA-A locus consists of five major supertypes Al, A2,
A3, A24, and A26, and the HLA-B locus of seven major
supertypes, B7, B8, B27, B39, B44, B58, and B62. However, the
present analysis includes all known polymorphic HLA-A and -B
molecules and suggests the existence of novel HLA supertypes,
such as B51/B55, B35 (both split from B7), and A33, with
specificities different from those described by previously defined
HLA supertypes. Note also the assignment of the A*3001 molecule
in the HLA-A tree. The A*3001 molecule has been variously
clustered; by some to A3 [39], by others to A24 [4], and recently to
Al [5]. By the present analysis, it should belong to the A3
supertype. Reassuringly, this has subsequently been confirmed
experimentally (Lamberth et al, manuscript in preparation).

Identifying endogenously presented peptides

The NetMHCpan method was further validated using a large set
of HLA ligand data. Nonamer HLA ligand data restricted to
HLA-A and HLA-B alleles not included in the training data of the
NetMHCpan method were downloaded from the SYFPEITHI
database [11]. This set consists of 326 MHC ligands restricted to
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43 different HLA-A and HLA-B alleles. For every peptide, the
source protein was found in the SwissProt database [40]. If more
than one source protein was possible, the longest protein was
chosen. All nonameric peptides contained in the source protein
sequences, except the annotated HLA ligand were taken as
negative peptides. For each protein-HLA ligand pair the predictive
performance was estimated as the percent rank of the HLA ligand
among all nonamer peptides in the protein sequence. Performing
this ranks calculation for all the 326 HLA ligands, we find a median
rank of 1.4%. For half of the protein sequences, the HLA ligand is
thus found within the top 1.4% highest scoring peptides. In
a protein of size 300 amino acids, the HLA ligand will thus on
average be ranked 4. The mean rank is 4.4%. These results
demonstrate the predictive power of the pan-specific method to
perform accurate predictions also for HLA alleles not included in
the training.

Predicting known HIV immunogens

As a final independent validation of the NetMHC approach, we
analyzed all CTL nonamer epitopes reported with full HLA
annotation in the Los Alamos HIV database (www.hiv.lanl
gov)[41]. This dataset contains 182 epitopes covering 49 HLA
molecules (8 of these are of unknown HLA supertype assignment).
The peptide-HLA binding affinity was predicted with NetMHC-
pand or-panB using the annotated HLA molecule, and, when
possible, with NetMHC (a previously reported HLA prediction
tool available as www.cbs.dtu.dk/services/NetMHC) using the
supertype representative. At a binding threshold of 500 nM,
NetMHC identified 41% of the known epitopes, whereas the
NetMHCpanA and -panB identified 52% (both approaches rejecting
>98% of a random collection of nonamer peptides). Thus, the
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Table 1. Comparison of various validated predictors of
: peptide-HLA binding.

)

ANN A*0211 A*0212 A*0216 A*0219

Pan 060 085 072 071

: Self 026 067 046 052

Neighbor 049 074 056 056

. Supertype 049 074 056 065

: # Data points 141 113 57 137

)

ANN A*2601 A*2602 B*5801 B*5701 B*4001 B*4402
: Pan 048 076 039 068 053 078
Self 080 067 084 083 082 071
Neighbor 025 075 055 069 059 077
 Supertype NA 075  NA 069  NA 0.27
: # Data points 1032 76 1340 59 1257 119
:©

:ANN B*2705 A*0101 B*0702

: Pan 003 036 049

Self 082 088 088

: Neighbor 021 027 053

. Supertype NA NA NA

: # Data points 1257 1213 1572

D)

ANN (locus average) HLA-A HLA-B

: Pan 075 069

Self 073 078

. Neighbor 057 061

Supertype 0.57 0.45

# Data points 26503 10881

Experimental peptide-HLA binding data was used to develop artificial neural

: networks. The numbers given in the table are the Pearson correlation coefficients
: between the logarithmically transformed predicted binding affinities (Kp values)
and logarithm transformed observed binding affinities (Kp values). In bold are

. highlighted the maximum values in each column. (A) illustrates how poorly
populated HLA molecules are more accurately predicted by the pan-specific

. leave-one molecule-out (Pan) predictor than by any of the conventional single
allele predictors, even those generated using the data for the molecule in

. question. (B) illustrates that the pan-specific Pan predictor is only accurate when
* it has been trained on well-populated and relevant data. (C) illustrates that the
. pan-specific Pan predictor is inaccurate when no relevant data was included in
the training sets. (D) illustrates the average performance for the HLA-A and -B
. locus molecules including random negative data. Note, only non-supertype

* representative alleles are included in the average. The predictors are Pan: the

. pan-specific ANN trained on data emanate from all members of the locus in
question (i.e. HLA-A or -B) except for the member in question; Self. The most

. stringent comparison would be to use cross-validated ANN generated using data
from the member in question, Neighbor: In the absence of self data, the next best
. alternatives would be to use cross-validated ANN generated using data from the
* most closely related member by BLOSUM comparison of the HLA-A (-or-B)

. pseudo-sequences, or Supertype: use cross-validated ANN generated using data
from the member representing the supertype.

: doi:10.1371/journal.pone.0000796.t001

pan-specific approach recognized about 25% more known
epitopes than an HLA supertype based approach.

DISCUSSION

Predictions of T cell epitopes have the potential to provide important
information for rational research and development of vaccines and
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immunotherapies (reviewed in [1,42]). Being computational, these
tools enable a rapid and complete genomics analysis of all available
pathogen isolates. Unfortunately, at this time they only cover a few of
the many HLA specificities found in human populations. The method
proposed here offers a complete incorporation of all human HLA
specificities thereby covering a significant aspect of human immune
diversity. Several groups have tried to develop methods for predicting
which peptides will bind to a given HLA molecule [10,14-20,43,44].
All such efforts have faced the problems of the limited amounts (or
lack) of data available for most of the different HLA molecules present
in the human population. Here, we report a pan-specific approach
overcoming the problems of lacking specific binding data during the
methods development. The major advantage of the pan-specific
approach is that it predicts the binding of any peptide to any present
and future HLA molecule, even in absence of data specific for the
query HLA molecule, whereas conventional data-driven prediction
approaches are restricted to predict the binding of peptides solely to
the particular HLA molecules included in the training. In the past,
others have proposed to similar strategies to span limited regions of the
HLA diversity [34-36]. However, this is to our knowledge the first
time data sets of this size have been available to do a complete analysis
of all HLA-A and -B specificities.

The large-scale leave-one-out experiment, covering 42 distinct
HLA-A and HLA-B alleles, provided unbiased support of the validity
of the pan-specific ANN approach. It suggests that a pan-specific
approach-given that there is sufficient and representative data
available-is preferable to conventional approaches using single-allele
specific prediction methods as defined by nearest Neighbor or Supertype
representation. The pan-specific method is even preferable to
conventional Se/f single-allele approach in cases where only limited
data is available (e.g. 5 out of 6 HLA-A2 molecules with only few
peptide data). It stresses the importance of the availability of large and
representative HLA binding data, and it suggests that the de-
velopment of the next generations of improved pan-specific predictors
can be optimized through targeted selection of peptides and HLA
molecules for future data inclusion.

The HLA supertype concept proposed by Sette and co-workers
[4] suggested an approach to reduce the complexity of the
polymorphism of the HLA. Several groups have developed
methods for prediction of “promiscuous” HLA binders within
known HLA supertypes [35,36,45]. However, all these methods
require prior knowledge about the HLA supertype relationship,
which for most HLA molecules remain undefined. Further, even if
the supertype relationship is known, peptides identified to bind to
a representative HLA molecule within a supertype might not bind
to one or several of the other members of the same supertype. At
the population level, the pan-specific approach promises an
alternative strategy to handle HLA polymorphism and improve
coverage in vaccine design. Rather than including one or more
peptides restricted to each of the HLA supertypes, one could use
the pan-specific HLA predictors in conjunction with the HLA
frequency distribution within an ethnic population in question to
select epitopes that will provide the broadest possible population
coverage. A computer simulation of such a strategy for HIV
specific CTL epitope identification suggest that coverage could be
improved from some 90% for a supertype representation strategy
to almost 100% for a pan-specific strategy (data not shown). At the
individual level, it is obvious that the ability to handle any HLA
molecule that a given patient might have irrespective of the
availability of specific data for a particular HLA haplotype in
question is an enabling technology for individualized immuno-
therapy and diagnostics.

It is implicitly clear that the pan-specific approach relies on the
ability of the neural networks to capture general features of the
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Table 2. Performance for the different alleles in terms of the
: Pearsons correlation for the “leave-one-out” experiment with
: added random negatives.

(A) Predictors of HLA-A locus molecules (with random negatives)

Pan-Specific HLA Binding

: Table 2. cont.

(A) Predictors of HLA-A locus molecules (with random negatives)

Pan  Self Neighbor Supertype  Count

EAve ex supertypes 069 0.78 0.61 045 Sum 10881

Pan Self Neighbor Supertype  Count

: A0101 046 088 026 A1101 Al 1213

A0201 0.87 0.89 0.82 A0206 A2 3876
A0202 081 081 074 A0203 076 A2 1447
A0203 087 089 083 A0202 082 A2 2046
: A0206 079 082 076 A0201 076 A2 2055
A0211 063 039 047 A0201 047 A2 141
A0212 085 059 073 A0201 073 A2 113
A0216 0.76 031 0.52 A0201 052 A2 57
A0219 0.75 057 059 A0212 061 A2 137
A0301 079 084 076 A1101 A3 2488
A1101 0.84 087 080 A0301 080 A3 2247
: A2301 077 071 076 A2402 058 A24 167
A2402 081 085 078 A2301 071 A24 418
A2403 083 084 082 A2402 A24 321
: A2601 069 079 053 A2602 A26 1032
A2602 071 069 070 A2601 070 A26 76
A2902 069 086 0.07 A3101 053 A3 160
A3001 068 082 —0.11 A3002 068 A3 931
A3002 065 064 037 A3001 036 A1l 92
A3101 0.77 084 062 A3301 053 A3 2123
A3301 066 076 056 A3101 0.09 A3 1140
A6801 062 080 —0.05 A6802 0.28 A3 1141
A6802 074 078 060 A6901 031 A2 1434
A6901 076 081 072 A6802 062 A2 1648
i Ave 074 075 057

Ave ex supertypes 0.75 073 057 0.57 Sum 26503

(B) Predictors of HLA-B locus molecules (with random negatives)
Pan Self Neighbor
B0702 0.55 0.88 053 B0801 B7 1572

Supertype  Count

B0801 062 075 053 B0802 B8 812
B0802 059 086 076 B0801 0.76 B8 724
: B1501 041 083 037 B3501 B62 1284
B1801 076 085 030 B3501 0.28 B62 290
B2705 0.05 082 0.15 B4002 B27 1257
: B3501 068 079 063 B5301 048 B7 982
B3901 048 071 024 B0801 B39 81
B4001 059 082 055 B4002 B44 1257
B4002 082 075 068 B4001 0.68 B44 118
: B4402 080 070 077 B4403 029 B44 119
B4403 079 074 070 B4402 043 B44 119
B4501 054 073 050 B4402 0.12 B44 114
: B5101 058 079 057 B5301 040 B7 244
B5301 075 079 069 B3501 043 B7 254
B5401 057 080 036 B0702 036 B7 255
B5701 068 072 069 B5801 069 B58 59

: B5801 045 085 066 B5701 B58 1340
Ave 059 079 054
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* Performance values for the “leave-one-out” experiment with added random

. negatives. (A) shows the performance for the 24 HLA-A alleles, and (B) the

* performance for the 18 HLA-B alleles. The first column gives the allele name, the
. following columns the performance of the Pan, Self, Neighbor, and Supertype
: methods, respectively, as explained in the text. After the Neighbor and

. Supertype performance values is shown the neighbor allele name and supertype
* association, respectively. Note, that the supertype performance is only stated
. for the non-supertype representing alleles. The final column gives the number
* of peptide data for each allele.

: doi:10.1371/journal.pone.0000796.t002

relationship between peptides and HLA sequences, and interpret
these in term of binding affinity. Using a polymorphism-based
definition of the pseudo sequence (see Materials and Methods), we
were able to generate pan-specific predictors of comparable predictive
performance to that of predictors defined using the structure-based
definition (data not shown). This supports our contention that the pan-
specific approach amounts to a virtually complete analysis of the
structure-function relationship of the polymorphic HLA system. It
remains to be seen whether a deconvolution of the pan-specific ANN
can unlock such information.

Intriguingly, our pan-specific predictors were able to predict
peptide binders of closely related primate MHC class I molecules.
For six of the most common Chimpanzee alleles represented in the
Immune Epitope Database [27], more than 55% of the
experimentally verified nonamer peptide binders could be
predicted while maintaining a specificity of >95% (data not
shown). This suggests that the specificity of closely related primate
MHC molecules overlaps extensively with that of HLA molecules
as earlier proposed by Sidney and co-workers[46]. We are
currently investigating whether the pan-specific predictors can
be used to identify peptide binders for, and perhaps even identify
supertype relationships of, non-human primate MHC molecules
(Nielsen et al., manuscript in preparation).

The current versions the NetMHCpanA and -panB are publicly
available at www.cbs.dtu.dk/services/NetMHCpan. We will
continuously update this service as more data become available.
In the future, we expect to expand it to cover HLA-C, HLA class
II, as well as non-human MHC molecules.

MATERIALS AND METHODS

Source data

Nonameric peptide-HLA binding data was obtained from two
sources: peptide-HLA binding data recently published by Sette
and coworkers [24], and data recently deposited at the IEDB by
Buus and coworkers. In total, the data set consisted of 37,384

Table 3. Performance of the pan-specific binding predictors.

:ANN HLA-A

HLA-B
' NetMHCpan 0.77 0.77

! Self 075 0.79

: The average performance per locus of the pan-specific NetMHCpanA and -panB
. predictors vs. single allele specific ANN’s trained using only data from available
: self-HLA molecules. Training and validation is done in a conventional cross-

. validated manner as described in Materials and methods with added random
* natural negative peptides.

. doi:10.1371/journal.pone.0000796.t003
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(B)

Figure 3. HLA clustering from NetMHCpan predictions. The left hand panel shows the clustering for 36 representative HLA-A alleles, and the right
hand panel the clustering for 51 representatives HLA-B alleles. The trees are generated using the neighbor-joining algorithm from HLA distance
matrices as described in the text. The 12 common supertypes are highlighted in full line circles. The proposed novel (sub)-supertypes are highlighted

in dotted circles.
doi:10.1371/journal.pone.0000796.g003

unique peptide-HLA interactions covering 24 HLA-A alleles and
18 HLA-B alleles (26503 and 10881 for the A and B alleles,
respectively). Some 2600 peptide-HLA interactions were present
multiple times and the average IC50 value was assigned as the
peptide affinity. The majority of the peptides present in both
dataset have very similar binding affinities, and 97.5% of those
peptides share annotated binding affinities within a 1.5 fold range.
Only less than 1% of the peptides differ with more than 10 folds in
annotated binding affinity, and the two data sets are thus highly
consistent. The number of peptide data for each of the 42 alleles is
listed in Table S4.

HLA pseudo sequence

The HLA sequence was encoded in terms of a pseudo-sequence
consisting of amino acid residues in contact with the peptide. The
contact residues are defined as being within 4.0 A of the peptide in
any of a representative set of HLA-A and -B structures with
nonamer peptides. Only polymorphic residues from A, B, and C
alleles were included giving rise to a pseudo-sequence consisting of
34 amino acid residues. Notice that due to multiple possible
conformations, the central peptide residues could choose to
interact with different subsets of residues in the binding groove.
All such residues were included in the pseudo-sequence. The
interaction map between the peptide and HLA sequence is given
in Figure 4.

Neural network training
Artificial neural networks were trained to quantitatively predict
peptide-HLA binding. As input data, we used both peptide

@ PLoS ONE | www.plosone.org

sequences and HLA primary sequence information, and as output
data we used experimentally determined affinity data. The peptide
data was obtained as described above. The primary HLA
sequence information was obtained from the Anthony Nolan
database (http://www.anthonynolan.org.uk/HIG/) and reduced
to the 34 amino acid pseudo-sequence as described previously.
The data was randomly split into five subsets, and five individual
networks were trained each using 4/5 of the data to update the
network weights and 1/5 to decide when to terminate the training
(i.e. a five-fold cross-validation). Architectures with hidden neurons
in the range 22 to 86 were tested, and the network with the highest
prediction performance (lowest square error) on the test set was
selected. The neural network architecture used was a conventional
feed-forward network with one hidden layer and a single neuron
output layer. A back-propagation procedure was used to update
the weights in the network. For each data point, the input to the
neural network is a sequence consisting of 43 peptide-HLA
residues (9 from the peptide and 34 from the HLA), and as output
the corresponding binding affinity was used. The binding affinity
was log-transformed into the range between 0 and 1 as described
by[15]. The input sequences were presented to the neural network
in three distinct manners: a) conventional sparse encoding (L.e. is
encoded by 19 zeros and a one), b) Blosum encoding, where each
amino acid was encoded by the BLOSUMS50 matrix score vector
[47], and c) a mixture of the two, where the peptide was sparse
encoded and the HLA pseudo sequence was Blosum encoded.
To estimate the predictive performance of the method, the
leave-one-out experiment was conducted as briefly described here.
Representing each HLA locus molecule, we trained a neural
network ensemble using all available data for the relevant locus,
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Figure 4. Definition of the HLA pseudo sequence. The upper part of the figure shows the residues of the HLA sequence estimated to be in contact
with the peptide in the binding cleft. The columns give the HLA residue numbering according the IMGT nomenclature. The rows demonstrate the
interactions with the nine peptides positions. Squares in grey outline the peptide positions estimated to have contact the corresponding HLA
residue. The lower part of the figure shows the amino acid polymorphism at each position in the pseudo sequence, both those that are common for
HLA-A and -B, and those that are unique for the HLA-A and HLA-B loci, respectively (as of February 2007).

doi:10.1371/journal.pone.0000796.g004

excluding all data specific for the HLA allele in question. The
network training was performed in a fivefold cross-validated
manner as describe above resulting in an ensembles of in total 15
neural networks. The predicted affinity was then determined as the
average of the 15 predictions in the neural network ensembles. In
this benchmark calculation, the data for the allelic molecule in
question was not involved in the training (and testing) of the
method, and the performance was thus truly an unbiased test
benchmark evaluation.

For the final NetMHCpan method, a conventional five-fold
cross-validated training was performed. The pool of unique
peptides was randomly split into five groups with all HLA binding
data for a given peptide placed in the same group (in this way, no
peptide can belong to more one group). The networks were
trained as described above adapting the three different sequences
encoding schemes, using 4/5 of the data to update the network
weights and 1/5 to determine when to terminate the training.

HLA distance trees

HLA distance trees were derived from correlations between
predicted binding affinities. FFor each antigen, the binding affinity
was predicted for a set of 10.000 random natural peptides using
the NetMHCpan method. Next, the distance between any two
alleles was defined, as D=1-P.,,, where P, is the Pearson
correlation between two sets of predicted binding affinities. In this
measure, two molecules that share a similar binding specificity will
have a distance close to 0 whereas two molecules with unrelated

@ PLoS ONE | www.plosone.org

binding specificities would have a distance close to 1. The HLA
allele distance matrixes were calculated for 390 HLA-A alleles,
and for 711 HLA-B alleles , and used the neighbor algorithm from
the PHYLIP package, which implements the neighbor-joining
algorithm of Saitou and Nei [48] to generate a HLA allele distance
tree. To estimate the significance of the HLA distance tree, 100
such distance trees were generated using the bootstrap method
[38]. The set of input trees were summarized in the form of
a “greedy” consensus tree using proprietary software [49]. A
greedy consensus tree uses a majority rule consensus tree to which
all compatible bipartitions with frequencies below 50% have been
added in order of descending frequency [50].

In order to visualize the HLA distance tree, only a subset of the
leaves in the tree was displayed. The subset was selected in
a Hobohm 1 like manner, where the alleles were clustered at a 0.95
distance level, and only a single allele from each cluster selected for
display [51].

SUPPORTING INFORMATION

Table S1 Performance for the different alleles in terms of the
Pearsons correlation for the “leave-one-out” experiment. Predictors
of HLA-A and HLA-B locus molecules (without random negatives).
(A) shows the performance for the 24 HLA-A alleles, and (B) the
performance for the 18 HLA-B alleles. The first column gives the
allele name, the following columns the performance of the Pan, Self,
Neighbor, and Supertype methods, respectively, as explained in the

August 2007 | Issue 8 | €796



text. After the Neighbor and Supertype performance values is
shown the neighbor allele name and supertype association,
respectively. Note, that the supertype performance is only stated
for the non-supertype representing alleles. The final column gives
the number of peptide data for each allele.

Found at: doi:10.1371/journal.pone.0000796.s001 (0.11 MB
DOC)

Table 82 Nearest neighbor identification for the 24 HLA-A and
18 HLA-B alleles. HLA-A and HLA-B allele nearest neighbor
identification. (A) gives the nearest neighbor identification for the
HLA-A alleles, (B) gives the nearest neighbor identification for the
HLA-B alleles. The first column gives the allele name, the second
column gives the Pan (leave-one-out pan-specific neural network)
performance in terms of the Pearson correlation coefficient. The
third and fourth columns give the allele name of the nearest
neighbor and distance as determined from alignment of the
pseudo sequences, the fifth column gives the predictive perfor-
mance of the Neighbor method in terms of the Pearson correlation
coefficient. Finally, the last column gives the number of data point
available for the neighbor allele.

Found at: doi:10.1371/journal.pone.0000796.s002 (0.08 MB
DOC)
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