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ABSTRACT

NetMHC-3.0 is trained on a large number of quan-
titative peptide data using both affinity data from the
Immune Epitope Database and Analysis Resource
(IEDB) and elution data from SYFPEITHI. The method
generates high-accuracy predictions of major histo-
compatibility complex (MHC): peptide binding. The
predictions are based on artificial neural networks
trained on data from 55 MHC alleles (43 Human
and 12 non-human), and position-specific scoring
matrices (PSSMs) for additional 67 HLA alleles. As
only the MHC class I prediction server is available,
predictions are possible for peptides of length 8–11
for all 122 alleles. artificial neural network predic-
tions are given as actual IC50 values whereas PSSM
predictions are given as a log-odds likelihood
scores. The output is optionally available as down-
load for easy post-processing. The training method
underlying the server is the best available, and has
been used to predict possible MHC-binding peptides
in a series of pathogen viral proteomes including
SARS, Influenza and HIV, resulting in an average of
75–80% confirmed MHC binders. Here, the perfor-
mance is further validated and benchmarked using
a large set of newly published affinity data, non-
redundant to the training set. The server is free
of use and available at: http://www.cbs.dtu.dk/
services/NetMHC.

INTRODUCTION

Intracellular infections with pathogens such as viruses and
certain bacteria are defeated by cytotoxic T lymphocytes
(CTL). The CTL T-cell receptor (TCR) recognizes foreign

peptides in complex with major histocompatibility com-
plex (MHC) class I molecules on the surface of the
infected cells. MHC class I molecules preferably bind and
present nine amino acid long peptides, which mainly
originates from proteins expressed in the cytosol of the
presenting cell. In most vertebrates, MHCs exist in a
number of different allelic variants that each binds a
specific and very limited set of peptides. For a number of
years, prediction methods have developed to identify
which peptides will bind a given MHC (1), and such
predictions can be highly valuable in a broad range of
applications, including rational vaccine design and disease
diagnostics. The artificial neural network (ANN) training
method behind NetMHC (2,3) has been benchmarked to
be the best among available methods (4). Preliminary
versions of the algorithm have been used to predict
possible MHC-binding peptides in a large set of patho-
genic viral proteomes, resulting in an average of >75%
confirmed MHC binders (5). Most MHC prediction
algorithms (a list of other servers is included in the
Supplementary Material) are trained on peptides of the
same length as they predict, but since data for peptide
lengths different from nine are much more scarce, the
broadness of MHC binding predictions for different
peptide lengths is accordingly limited. In this server,
however, a method is implemented making it possible to
predict 8-, 10- and 11-mer peptide binding using 9-mer
trained predictors, which extends the MHC coverage for
these peptide lengths significantly compared to other
available MHC:peptide-binding servers.

METHODS

The server is trained on the largest number of quantitative
peptide:MHC affinity measurements ever published using
both affinity data from the Immune Epitope Database and
Analysis Resource (IEDB) (6), eluted peptide data from
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the SYFPEITHI database (7) and proprietary affinity
data. The predictions based on ANNs are trained essen-
tially as described in (3) on data from 55 MHC alleles
(43 Human and 12 non-human), and the predictions based
on position specific scoring matrices (PSSMs) are trained
as described in (2) for additional 67 HLA alleles. A large
number of 9-mer MHC affinity data have become avail-
able from the IEDB database, since the training of the
ANNs used at NetMHC-3.0, and all peptides not used in
the training (6452 9-mer peptide affinity data points,
covering 32 HLA alleles) were used for evaluation of the
server performance. These data are available at the server.
In this dataset, 3104 were measured to be binders
(IC50<500 nM), 76% of these were correctly predicted as
such. 3030 peptides were predicted to bind to a given
HLA, and 78% of these had a measured IC50<500 nM.
The average Pearson correlation coefficient (PCC) and
area under a ROC curve (AUC) value using a 500 nM
classification threshold were 0.71 and 0.86, respectively.
For the full per allele results, see the Supplementary
Material (Supplementary Table 1 and Supplementary
Figure 1). NetMHC-3.0 uses a new approximation algor-
ithm that reliably predicts the affinity of peptides of
lengths 8, 10 and 11, for which affinity data for training are
rare (8). The method uses predictors trained on peptides
of length 9 to successfully extrapolate to other lengths.
In short, the method approximates each peptide of any
length to a number of 9-mers, by inserting X (for 8-mers)
or deleting amino acid(s) (for 10- and 11-mers) and set
the final prediction to an average of the 9-mer predictions.
We had previously trained ANN predictors directly on
10-mer affinity data and since this training more than 2000
10-mer peptide:MHC affinities had become available from
the IEDB database (6). Area under a ROC curve (AUC)
values were calculated for each allele using either ANNs
trained on 10-mers or the approximation method. For
12 of the 16 alleles, the approximation method performed
better than the 10-mer trained ANNs (P< 0.01), see
Supplementary Material Figure 2. However, for the four
HLA-alleles, this evaluation showed better performance
for ANNs trained on 10-mer peptides; these 10-mer
trained ANNs are used for predictions by the server. For
8-mers, 2002 affinity data were extracted covering 35
MHC alleles. The overall PCC and AUC were 0.68 and
0.86, respectively. For 8-mer per allele performance, see
the Supplementary Material Figure 4. For 8-mers, predic-
tors trained on actual 8-mers seems to be better than the
approximation method otherwise used, so for the alleles
with available 8-mer affinity data, 8-mer trained ANNs are
used for the predictions. In general, it is not possible to
estimate how reliable a single prediction is. However, the
stronger the affinity is predicted the higher are the chance
that the actual affinity is stronger than the generally
accepted binding threshold of 500 nM.

SERVER

NetMHC-3.0 predicts the binding affinity of either a list of
peptides with a defined length (8–11 residues) or all
possible sub-peptides hosted within full-length proteins.

The input must be in the FASTA format, or as peptides all
of equal length, one peptide pr. line. The server will accept
a maximum of 5000 sequences per submission; each
sequence not more than 20 000 amino acids with a
minimum length corresponding to the selected length of
prediction (see subsequently). Input data can be pasted
into a text field or uploaded from a local file on the user’s
computer.

If the input is in peptide, format the corresponding tick-
box must be selected. The input must not exceed 5000
sequences and with a maximum of 20 000 amino acids in
each sequence. One or more MHCs must be selected, as
well as the desired peptide length. Only one prediction
length at a time can be used. The output can optionally be
sorted according to the predicted affinity by selecting a
tick-box. The predictions start by clicking the Submit
button. An example input in FASTA format is shown in
Figure 1.

The output is displayed as raw text with a header
indicating the server name, the type of prediction (PSSM,
ANN or ANN-approximation) the first selected allele and
the date (Figure 2) followed by the prediction output in a
column format. The columns are named in the first line of
the prediction output. The first column [pos] is the
position of the first amino acid of the predicted peptide
within the possibly longer sequence, numbering starting
with 0. Column (peptide) is the primary sequence of the
(sub-)peptide. Column (logscore) is the raw prediction
output, which for ANNs is 1-log50000 to the affinity in
nanomolar units. For PSSM predictions the raw predic-
tion score is a log-odds likelihood score. Additionally a
column is included for ANN predictions, [affinity (nM)],
which is the predicted affinity presented in nanomolar
units. Column (Bind Level) indicates if the peptide is
predicted to bind stronger than a certain threshold [for
ANN predictions stronger than 50 nM (SB) or stronger
than 500 nM (WB); for PSSM high-binding peptides (SB)
have a prediction score greater than the 0.1% percentile
score value of 1 000 000 random natural peptides, and
weak binding (WB) peptides a score value above the 1%
percentile score of 1 000 000 random natural peptides
predictions]. Predicted affinities weaker than 500 nM or
lower than the 1% percentile score have no indications.
Column (Protein Name) gives the name of the predicted
protein. If peptide input was used, the name will always be
‘Sequence’. Column (Allele) gives the name of the MHC
allele chosen. The output contains all the sub-peptides for
each protein for a given allele either in the order they
appear in the sequence or sorted by predicted affinity
within each protein (if chosen). If more than one protein
sequence were entered, a dashed line will separate the

>Protein_1

SLYNTVATLSLYNTATLSLYNTVATL

>Protein_2

ELEVENTENNINEANDEIGHTMERS 

Figure 1. Example input in FASTA format.
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Figure 2. Raw text output using the input in Figure 1 and selecting the alleles HLA-A0201 and HLA-A0301. 10-mer peptide predictions were chosen.
Affinity sorting was chosen.
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peptides from each protein. If more than one allele were
chosen, the output will show a header similar to the first
immediately after the first predictions, all in the same web
output page.
In each header, there is a link to a file with the output in

tab as separated format, where the filename ends on.xls
making it easily imported into spreadsheet programs. This
file always contains the predicted peptides in the order
they appeared in the input file. The output data for each
peptide will be displayed on a single line with predictions
for each of the selected alleles in different columns
(Figure 3).

FINAL REMARKS

This server is developed to aid research and limit the
resources needed for rational and effective CTL epitope
discovery and will be continuously updated as new data
become available. All comments and suggestions for
usability improvements are most welcome.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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Figure 3. Downloaded output sheet opened in Microsoft� Excel and adjusted with of column. The output was generated using input in Figure 1 and
selecting the alleles HLA-A0201 and HLA-A0301. 10mer peptide predictions were chosen.
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