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ABSTRACT 

MHC class I antigen processing consists of multiple steps that result in the presentation of MHC 

bound peptides that can be recognized as T cell epitopes. Many of the pathway steps can be 

predicted using computational methods, but one is often neglected: mRNA expression of the 

epitope source proteins. In this study, we improve epitope prediction by taking into account both  

peptide-MHC binding affinities and expression levels of the peptide’s source protein.  Specifically, 

we utilized biophysical principles and existing MHC binding prediction tools in concert with RNA 

expression to derive a function that estimates the likelihood of a peptide being presented on a given 

MHC class I molecule. Our combined model of Antigen eXpression based Epitope Likelihood-

Function (AXEL-F) outperformed predictions based only on binding or based only on antigen 

expression for discriminating eluted ligands from random background peptides as well as in 

predicting neoantigens that are recognized by T cells. We also showed that in cases where cancer 

patient-specific RNA-Seq data is not available, cancer-type matched expression data from TCGA 

can be used to accurately estimate patient-specific gene expression. Using AXEL-F together with 

TGCA expression data we were able to more accurately predict neoantigens that are recognized 

by T cells. The method is available in the IEDB Analysis Resource and free to use for the academic 

community. 

 

Significance statement 

Epitope prediction tools have been used to call epitopes in viruses and other pathogens for almost 

30 years, and more recently, to call cancer neoantigens.  Several such tools have been developed, 

however most of them ignore the mRNA expression of the epitope source proteins. In the present 

study, we have, to our knowledge for the first time, developed a biophysically motivated model to 
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combine peptide-MHC binding and abundance of the peptide’s source protein to improve epitope 

predictions. Our novel tool AXEL-F is freely available on the IEDB and presents a clear 

opportunity for predicting and selecting epitopes more efficiently. 
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INTRODUCTION 

Presentation of peptides on the cell surface by major histocompatibility complex (MHC) 

class I molecules is crucial for CD8+ T cell mediated immune responses, including those against 

viral infections and tumors. The MHC class I antigen processing and presentation pathway consists 

of multiple steps during which proteins are degraded into peptides, loaded on MHC class I 

molecules and presented on the cell surface 1. Recognition of these peptide-MHC complexes on 

the cell surface as foreign by CD8+ T cells prompts an immune response which can lead to the 

eradication of affected cells. Accurate identification of which specific peptides are presented on 

MHC class I has advantageous applications in diagnostics and in developing therapeutic 

interventions such as vaccines for infectious diseases and cancer 2-4. 

Numerous computational tools have been developed to predict the various steps in the 

MHC class I antigen processing and presentation pathway (reviewed in 5), including prediction of 

proteasomal cleavage 6, 7, transport into the endoplasmic reticulum (ER) by transporter associated 

with antigen processing (TAP) 8, 9, peptide-MHC binding (reviewed in 10), and predicting the 

stability of the peptide-MHC complex 11, 12. Among these, tools predicting peptide-MHC binding 

have been proven to best predict immunogenic epitopes, i.e. presented peptides that are recognized 

by T cells 5, 10, 13-15. These tools generally consist of machine learning methods that have been 

trained with experimentally generated peptide-MHC binding data. Such experimental data is for 

example available in the Immune Epitope Database (IEDB) 16.  

One drawback of peptide-MHC binding data is that only the MHC binding step of the 

antigen processing and presentation pathway is considered. This drawback can be overcome by 

using ligand elution data for training. As eluted ligands passed through the natural antigen 

processing and presentation pathway, the resulting elution data inherently contains valuable 
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biological information that is not available when only peptide-MHC binding is considered 5. In 

fact, machine learning methods that have been trained on combination of peptide-MHC binding 

and ligand elution data outperform methods that have been trained on peptide-MHC binding data 

alone in predicting epitopes 5, 10, 13, 17, 18. 

One step in the antigen processing and presentation pathway that is often ignored by 

epitope prediction methods is one of the earliest: mRNA expression of source proteins. Proteomic 

studies have previously reported correlations between protein abundance and MHC-peptide 

presentation 19-21, and more recently, it was reported that MHC-peptide presentation is strongly 

correlated with mRNA expression of the ligand’s source protein 19, 22-24, underlining the potential 

value of including source protein expression information into epitope predictions. In fact, Abelin 

et al. reported increased performance in predicting eluted ligands, and Bulik-Sullivan et al. 

reported increased performance in predicting immunogenic neoantigens when expression 

information was included in their respective machine learning models 22, 25.  

In this study, we wanted to formally describe the interplay of peptide-MHC binding and 

the expression of the peptide’s source protein. We took advantage of the publicly available, highly 

accurate peptide-MHC binding prediction tool NetMHCpan 4.0 and developed a model that 

combines these predictions with the expression of the peptide’s source protein in a biophysically 

meaningful fashion to estimate the likelihood of the peptide being presented on a given MHC class 

I molecule. Our model named Antigen eXpression based Epitope Likelihood-Function (AXEL-F) 

outperformed NetMHCpan 4.0 in discriminating eluted ligands from random background peptides 

as well as in predicting neoantigens that are recognized by T cells. AXEL-F is publicly available 

and free to use for the academic community at http://axelf-beta.iedb.org/axelf. 
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RESULTS 

Assembly of a set of HLA class I eluted ligands and background control peptides 

We wanted to assess the performance of expression level, predicted binding affinity, and 

their combination in distinguishing eluted ligands from a set of random background peptides. We 

utilized a previously published dataset of 15,090 HLA class I ligands eluted from five different 

HLA class I alleles 26.  Trolle et al. isolated naturally presented ligands from HLA class I peptide 

complexes derived from HLA class I transfected HeLa cells (hereafter referred to as Trolle set). 

Next, we generated a set of background peptides to compare the set of eluted ligands 

against. For each peptide in the Trolle set, 10 peptides were randomly picked from the human 

proteome. The lengths of the random peptides and the assignment of HLA class I alleles were 

chosen so that the total number of background peptides was uniformly distributed across all alleles 

and peptide lengths.  

As expression data analysis was not included in the Trolle study, we retrieved expression 

data of HeLa cells from another previously published study 27, which used similar conditions. We 

used an in-house pipeline to process the raw RNA-Seq data and calculated gene expression as 

transcripts per million (TPM). Using the provided UniProt identifiers of the source proteins for 

each peptide, the corresponding TPM value was annotated to assess the expression level of the 

protein each peptide was retrieved from. 

Next, we performed HLA class I binding predictions for each ligand and random 

background peptide using the NetMHCpan 4.0 algorithm 17. For each peptide, we retrieved 

predicted binding affinity provided in IC50 together with the corresponding percentile rank 

(BA_Rank), as well as the eluted ligand score (EL_Score) and the corresponding percentile rank 

(EL_Rank). The complete dataset is provided in Supplemental Table S1. 
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It is widely known 17 that the NetMHCpan EL_Rank and EL_Score predictions generally 

perform better in predicting eluted ligands than predicted IC50. The neural network that performs 

these EL predictions has been trained on eluted ligand data and is thus more capable of capturing 

eluted ligands. However, as the EL_Score is an output score of the neural network architecture, it 

is an abstract value and cannot be directly translated into the biological context of our model of 

peptide presentatio. IC50 values are defined as the concentration that inhibits 50% binding of a 

labeled reference peptide, and, if the assay is performed under appropriate conditions, the 

log(IC50) values are proportional to binding free energies. Low IC50 values correspond to 

peptides binding with high affinities. We therefore chose to use the predicted IC50 as a measure 

of peptide-HLA binding for the following analyses and provide additional analyses based on 

EL_Rank and BA_Rank as supplemental figures.  

 

HLA class I eluted ligands originate from highly expressed genes and are predicted 

good HLA binders 

We compared expression levels of the genes from which eluted ligands originated to 

expression levels of the genes from which background peptides were retrieved. We analyzed each 

of the five alleles separately (Figure 1A).  As expected, this analysis showed that ligands are 

expressed at significantly higher levels than random background peptides (p < 2.2e-16, Wilcoxon 

Test). A total of 91% of ligands were expressed above a TPM of 10, while only 48% of background 

peptides were expressed at this level. These results confirm that MHC I eluted ligands are 

preferentially derived from abundant proteins, as previously reported 22. 

To explore how predicted HLA binding affinity of eluted ligands compare to the 

background peptides, we compared predicted IC50 values of eluted ligands to background peptides 
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separately for each of the five alleles (Figure 1B).  The majority of the background peptides (99%) 

were not predicted to bind (IC50 > 500 nM). In contrast, eluted ligands were predicted to bind at 

significantly higher levels (p < 2.2e-16, Wilcoxon Test) and 75% of ligands were predicted to bind 

their restricting HLA (IC50 < 500 nM). Similar results were obtained when this analysis was 

performed based on BA_Rank and EL_Rank (Supplemental Figure S1). 

 

 

Figure 1. HLA class I eluted ligands originate from highly expressed genes and are predicted 
good HLA binders. The quartile ranges and density of TPM (A) and predicted IC50 (B) values 
are displayed for the five alleles included in the dataset. Ligands (displayed in tan) are expressed 
at significantly higher levels than random background peptides (displayed in green) and are 
predicted to bind at significantly higher levels (p <  2.2e-16, Wilcoxon Test). Dashed lines indicate 
TPM 10 and IC50 500 nM, respectively. 
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As a next step, we wanted to further investigate the relationship and interplay between 

HLA binding of a ligand and the expression of its source protein. We separated the binding affinity 

and TPM values in our dataset into ranges to create a 2-dimensional matrix with the TPM on the 

x-axis and the IC50 on the y-axis (Figure 2, Supplemental Figure S2). Each peptide was then 

assigned to a cell in this matrix according to its IC50 and TPM values. For each cell, we then 

determined the percentage of ligands among all peptides that fall into the corresponding IC50 and 

TPM ranges. Visual inspection of the resulting matrix revealed that certain IC50 and TPM ranges 

were enriched for eluted ligands, namely the part of the matrix that represents high binding affinity 

and substantial expression, as already discussed above. The matrix however showed additional 

interplay between IC50 and TPM: ligands with lower expressed source proteins seemed to bind 

HLA strongly while ligands that were not able to strongly bind HLA seemed to be derived from 

highly expressed source proteins. When we compared the IC50 values of ligands derived from the 

top 10% expressed source proteins to ligands derived from the bottom 10%, we found that ligands 

derived from low abundance proteins bind HLA significantly better than ligands derived from high 

abundance proteins (p-value < 2.2e-16, Wilcoxon test, Supplemental Figure S3). 

These observations, which closely mimic those of others 22, indicated that HLA binding of 

a ligand and the expression of its source protein might compensate for each other. Abundant 

expression of a source protein will generate more peptides which in turn might enhance the chances 

of these abundant peptides to bind HLA even if their HLA binding capacity is weak, simply by 

being available in high numbers. Conversely, a peptide with high binding affinity might still be 

presented on HLA even if is not abundantly expressed, by outcompeting other more abundant 

peptides available for HLA binding. 
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HLA binding and expression level are independent predictors of HLA class I eluted ligands 

Having established that eluted ligands are highly expressed and are predicted good binders, 

we analyzed the predictive performance of these metrics in distinguishing ligands (positives) from  

background peptides (negatives). We considered all four metrics provided by NetMHCpan as well 

as the TPM of the source protein as a measure of expression and performed a Receiver Operating 

Characteristics (ROC) analysis to assess prediction performance in terms of the Area Under the 

ROC Curve (AUC) as well as partial AUC at 10% false positive (pAUC). All NetMHCpan metrics 

were excellent predictors of eluted ligands: all AUC and pAUC values were above 0.99. With an 

 

 
Figure 2. Interplay between HLA binding of eluted ligands and expression of their source 
Proteins. The binding affinities and TPM values were separated into ranges to create a 2-dimensional 
matrix with the TPM on the x-axis and the IC50 on the y-axis. Each peptide was assigned to a cell in 
this matrix according to its IC50 and TPM values. For each cell, the percentage of ligands among all 
peptides that fall into the corresponding IC50 and TPM ranges was determined and the cell was colored 
accordingly. 
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AUC value of 0.812 and a pAUC of 0.629, TPM alone was also a good predictor for eluted ligands 

(Figure 3). 

 

Integrating HLA binding of the ligand and expression of its source protein using a 

Boltzmann distribution 

To integrate HLA binding capacity of the ligand and the expression of its source protein 

into a function to more accurately predict ligand elution, we first applied a naive approach to 

combine HLA binding and expression by simply assigning a poor predictive value to each peptide 

that was derived from a non-expressed source protein (TPM = 0). This approach was based on the 

biological assumption that a peptide cannot be an eluted ligand if its source protein is not 

expressed. We considered all peptides from the Trolle set and the background peptides and 

assigned each peptide the worst possible prediction score if the corresponding source protein was 

 
 
Figure 3. Performance of different predictors in identifying HLA class I eluted ligands.  Receiver 
Operating Characteristics (ROC) curves (A) and ROC curves at 10% false positive rate (B) for 
different NetMHCpan predictors, TPM and AXEL-F scores are displayed. 
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not expressed. A ROC analysis was performed for each metric provided by NetMHCpan and 

corresponding AUC values summarized in Supplemental Table S2 clearly indicated that this 

naive method does not improve predictive performance across NetMHCpan predictions.  

Next, we tested a more complex model to capture the effect of quantitative expression 

differences and combine them with peptide-HLA binding using the Boltzmann distribution which 

is often used to describe biophysical systems 28. The Boltzmann distribution is a probability 

distribution that predicts, in an ensemble of particles, the proportion of particles that will be in a 

certain state with a specific energy 29. This function can be adapted to describe peptide 

presentation, as we want to detect, among all available peptides, the ones that are in a state bound 

to HLA with a specific binding free energy. In this context, the number of all available peptides of 

a certain species was considered proportional to the expression values of its source protein (TPM) 

and the binding free energy can be inferred from binding affinities (IC50). Combining these 

considerations with the Boltzmann distribution function yields: 

#𝑝𝑒𝑝𝑡𝑖𝑑𝑒𝑠 = 	𝛼 ∗ TPM ∗ 𝑒/012	(4567)/:; 

where α is a scaling factor for TPM and kT is a scale that mimics the product of the Boltzmann's 

constant k and the thermodynamic temperature T, as adapted from the original Boltzmann 

distribution function. To account for the detection limit of RNA-Seq, we additionally introduced 

a parameter minTPM and modified the function to select for the higher value between minTPM 

and the input TPM value: 

#𝑝𝑒𝑝𝑡𝑖𝑑𝑒𝑠 = 𝛼 ∗ max	(𝑚𝑖𝑛𝑇𝑃𝑀, 𝑇𝑃𝑀) ∗ 𝑒/012	(4567)/:;  

This function will estimate the number of peptides for a given species that are bound to MHC. We 

want to know the likelihood of finding at least one of these peptides when performing a mass 

spectrometry experiment and/or when a T cell scans a cell: 
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𝑃(𝑝 > 0	|	#𝑝𝑒𝑝𝑡𝑖𝑑𝑒𝑠) = 1 − 𝑒/	#JKJLMNKO	 

Our final model estimates, for a given peptide with IC50 and TPM value, its likelihood of 

being presented on HLA and being an epitope. We named this model AXEL-F, standing for 

Antigen eXpression based Epitope Likelihood-Function.  

Next, we used the Trolle dataset to identify the optimal value for the three free parameters 

of AXEL-F (α, kT, and minTPM), based on the predictive performance measured by AUC. We 

performed 10 iterations of 5-fold cross-validation to avoid overfitting the parameters and also 

trained the parameters separately for the 5 alleles as well as for the complete dataset. For each 

parameter, we used the median value over all runs of cross-validation. The parameters obtained in 

this way fell into a consistent range between the 5 subsets corresponding to the 5 alleles in the 

Trolle set (Table 1).  

 

Table 1 Fitted parameters and obtained AUC values 

Allele α kT minTPM AUC AXEL-F AUC IC50 AUC EL_rank 
HLA-B*07:02 1.267 0.133 0.567 0.996 0.994 0.995 
HLA-A*01:01 1.296 0.119 0.533 0.995 0.993 0.994 
HLA-A*02:01 1.173 0.215 0.612 0.992 0.987 0.993 
HLA-A*24:02 1.267 0.133 0.567 0.996 0.993 0.995 
HLA-B*51:01 1.292 0.123 0.521 0.991 0.987 0.982 

Complete 
dataset 1.296 0.131 0.523 0.993 0.990 0.993 

 

 AXEL-F outperformed IC50 consistently for all 5 alleles as well as for the complete dataset 

(p-value = 0.002, DeLong's test) as shown by increased AUC values (Table 1). AUC values for 

AXEL-F scores were also slightly higher than those for EL_Rank for all alleles except HLA-

A*02:01, the increase in AUC however was only significant for HLA-B*07:02 (p < 0.02, 

DeLong's test). AXEL-F and EL_Rank were on par when applied on the complete dataset. As the 
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gain in performance was significantly higher when parameters were trained on the complete 

dataset (p-value < 2.2e-16, DeLong’s test), we decided to present subsequent analyses for the 

complete dataset only.  

As mentioned and shown above, EL_Rank predictions generally perform better in 

predicting eluted ligands than predicted IC50. However, as the EL_Rank is an abstract output value 

of the neural network architecture it and cannot be directly translated into the biological context 

of our model. We still wanted to take advantage of the superior predictive performance of El_Rank 

and incorporate it into our model. In order to achieve this, we mapped each EL_Rank to a 

corresponding IC50 value by comparing the percentile ranks of the two metrics. We named this 

new metric EL_to_IC50 and used it as an input for AXEL-F instead of the IC50 values we used 

earlier, and again used the Trolle dataset to train the parameters α, kT and minTPM. The values 

we obtained were very similar to those obtained when using IC50: α was fit to 1.233, kT to 0.156, 

and minTPM to 0.567. We were able to additionally further boost the performance of AXEL-F 

and achieved an AUC of 0.995 and a pAUC of 0.978 (Table 2, Figure 3). AXEL-F (EL_to_IC50) 

significantly outperformed AXEL-F (IC50) as well as all NetMHCpan predictions (p-value < 2.2e-

16, DeLong’s test). 

 

Table 2 Overview of AUC and pAUC values for Trolle and Abelin datasets. 
 

Trolle Abelin 
  AUC pAUC AUC pAUC 
TPM 0.812 0.629 0.761 0.605 
IC50 0.990 0.954 0.965 0.930 
BA_Rank 0.991 0.957 0.968 0.946 
EL_Score 0.993 0.969 0.974 0.950 
EL_Rank 0.993 0.968 0.973 0.953 
AXEL_F (IC50) 0.993 0.970 0.973 0.940 
AXEL-F (EL_to_IC50) 0.995 0.978 0.978 0.955 
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Model evaluation on an independent dataset of eluted ligands 

We next validated our results with an independent dataset 22 of eluted ligands from mono-

allelic B cells transduced with a single HLA class I molecule. The dataset contained 26,089 eluted 

ligands from 16 HLAs, with only four overlapping with those present in the Trolle dataset. Abelin 

et al also performed RNA-Seq and provided the data in the form of TPM values (GSE93315). We 

again generated a background dataset and performed NetMHCpan predictions for all 260,890 

peptides. The complete dataset is provided in Supplemental Table S3. 

We calculated AXEL-F likelihood scores by using both, IC50 and EL_to_IC50, as inputs 

and compared the performance to NetMHCpan predictions in discriminating eluted ligands from 

the random background set. The AUC and pAUC results summarized in Table 2 and the ROC 

curves shown in Supplemental Figure S4 indicate that AXEL-F likelihood scores significantly 

outperformed IC50 and BA_Rank when likelihood scores are calculated using IC50 (AXEL-F 

(IC50), p-value < 2.2e-16, DeLong’s test). When likelihood scores were calculated using 

EL_to_IC50 (AXEL-F (EL_to_IC50)) it also significantly outperformed EL_Score and EL_Rank 

(p-value < 2.2e-16, DeLong’s test). 

Overall, these data showed that AXEL-F outperformed all NetMHCpan predictions alone 

on both the original Trolle dataset, and a comprehensive independent ligand elution dataset. These 

results highlight the robustness of our model and the biological relevance of integrating HLA 

binding and expression of the source protein of a given peptide in predicting whether the peptide 

is an eluted ligand or not. 

 

Model evaluation on a dataset of experimentally validated cancer neoantigens 
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We next wanted to analyze how our model AXEL-F performed in predicting epitopes, 

specifically cancer neoepitopes that arise from somatic mutations. We utilized a previously 

published study by Parkhurst et al 30 that reported immunogenicity screening results of neoantigens 

from 75 patients with various gastrointestinal cancers. The group performed whole-exome 

sequencing to detect somatic mutations and determined which neoantigens were recognized by 

tumor-infiltrating-lymphocyte cultures 30. The results were provided as a supplemental table to the 

study, listing all tested neoantigens and corresponding screening results (CD4+ and/or CD8+ or 

negative, (Supplementary 3 in 30).  

As our study is based on HLA class I predictions, we only considered the 54 neoantigens 

that were recognized by CD8+ T cells and the 7,529 peptides that were not recognized at all. We 

further filtered the dataset by only retaining peptides for which RNA-Seq information was 

provided, which resulted in a final set of 46 patients with 28 recognized neoantigens and 1,298 

peptides that were not recognized. We named this dataset the NCI dataset and wanted to compare 

the performance of AXEL-F to NetMHCpan predictions alone in distinguishing immunogenic 

neoantigens (positives) from peptides that were not recognized by tumor infiltrating lymphocytes 

(negatives). 

To do so, we first performed NetMHCpan predictions on the complete dataset and found 

that both, IC50 and EL_Rank could discriminate immunogenic neoantigens with AUC values of 

0.698 and 0.688, respectively (Table 3). The RNA-Seq information that was provided with the 

NCI dataset included read depth at the position of the mutation (tumor_rna_depth), the number of 

reads supporting the mutation (tumor_rna_alt_reads), and the variant allele frequency 

(tumor_rna_alt_freq). Unfortunately, TPM values were not provided as part of the dataset. As a 

first analysis, we assessed the predictive performance of these RNA metrics in predicting 
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immunogenic neoantigens and found that all three metrics had some predictive value (Table 3 and 

Supplemental Figure S5). With an AUC of 0.642, the number of reads supporting the mutation 

(tumor_rna_alt_reads) had the best performance among the three RNA metrics. We presumed that 

the tumor_rna_alt_reads can be used as a proxy for describing the expression of mutated transcripts 

and used this metric instead of a TPM together with the EL_to_IC50 to calculate AXEL-F 

likelihood scores. In fact, the AUC values for AXEL-F scores that were obtained this way (AXEL-

F (tumor_rna_alt_reads)) were higher than those of both NetMHCpan predictions as well as the 

tumor_rna_alt_reads alone, with an AUC of 0.722 (Table 3). The difference in AUC however, 

was not significant (DeLong’s test). 

Table 3 Overview of AUC values in predicting immunogenic neoantigens from the NCI 
dataset 

 AUC 

IC50 0.698 
EL_rank 0.688 
tumor_rna_depth 0.586 
tumor_rna_alt_freq 0.593 
tumor_rna_alt_reads 0.642 
TCGA_TPM 0.642 
TCGA_PANCAN_TPM 0.613 
AXEL-F (tumor_rna_alt_reads) 0.722 
AXEL-F (TCGA_PANCAN_TPM) 0.718 
AXEL-F (TCGA_TPM) 0.731 

 

 

TPM values from TCGA can be used to accurately estimate gene expression in a given 

patient sample 
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As TPM values were not provided as part of the NCI dataset we wanted to analyze whether 

it is possible to estimate gene expression levels in a given patient sample by using expression data 

retrieved from The Cancer Genome Atlas (TCGA). We downloaded pre-calculated TCGA TPM 

values, and for each cancer type included, we calculated the median expression for each gene 

across all samples in the corresponding cancer type specific subset. We utilized in-house RNA-

Seq data of 25 patients with 9 different cancer types and analyzed how well gene expression of 

these patients can be estimated by using the gene expression data retrieved from TCGA. For each 

patient from our in-house cohort, we matched the TPM from in-house RNA-Seq with TPM values 

from TCGA. This was done for each cancer type separately so that our in-house data was matched 

with all available cancer types from TCGA. We then analyzed, how well TCGA median TPM 

values correlate with the in-house RNA-Seq TPM values. This analysis showed that cancer-type 

matched TPM values correlate very well (Pearson’s r2 > 0.6, Figure S6).  

Having established that TPM values from TCGA can be used to estimate gene expression 

in a given patient sample, we proceeded to utilize this approach to estimate TPM values for the 

NCI dataset. We matched the cancer type and gene name for each peptide in the NCI dataset and 

assigned the corresponding cancer type specific median TPM from TCGA. With an AUC of 0.642 

this TCGA_TPM alone was as predictive for immunogenic neoantigens as tumor_rna_alt_reads 

alone. When we used the TCGA_TPM together with the EL_to_IC50 as inputs for AXEL-F, we 

achieved the best performance reaching AUC values of 0.731 (Table 3 and Supplemental Figure 

S5). Of note, when we did not match the cancer types and used TPM values calculate from the 

entire TCGA dataset (TCGA PANCAN) the AUC was 0.718 and thereby lower compared to when 

cancer types were matched. 
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These results underline the general applicability of our model and furthermore its potential 

to predict cancer neoantigens more accurately. Even when patient-specific expression data is not 

available, which does occur often due to the many technical challenges of RNA-Seq, it is possible 

to estimate the expression of neoantigen source proteins from TCGA and perform accurate 

predictions using AXEL-F. 
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DISCUSSION 

In this study, we used a biophysical model to formally describe the roles of antigen 

expression and peptide-MHC binding affinity in the antigen processing and presentation 

machinery. We hypothesized that the likelihood of a peptide being presented on HLA class I and 

subsequently being recognized by CD8+ T cells is dependent on both, the abundance of its source 

protein and its HLA binding capacity. AXEL-F, the model we developed, outperformed 

NetMHCpan 4.0 in discriminating eluted ligands from random background peptides as well as in 

predicting neoantigens that are recognized by T cells. 

It had already been reported that including expression data of source proteins when training 

machine learning models for predicting ligand elution or neoantigen prediction can improve 

performance 22, 25. These tools however, are not publicly available. AXEL-F in contrast, is 

available on the IEDB Analysis Resource (IEDB-AR) and is free to use for the academic 

community 31. The IEDB-AR provides numerous computational tools focused on the prediction 

and analysis of B and T cell epitopes and AXEL-F is a valuable addition to these tools. 

We showed that the expression level of source proteins alone is already a good predictor 

of ligand elution. The predictive value is even more pronounced in the case of neoantigens: even 

though patient-specific expression data was not available and we used publicly available cancer 

type matched expression data from TCGA, the predictive performance of this estimated TPM was 

almost on par with NetMHCpan predictions. Importantly, neoantigens included in the NCI dataset 

were not pre-filtered based on MHC binding or expression 30, which makes it possible to accurately 

compare the performance of these metrics. 

Currently, many epitope prioritization algorithms only use expression data to filter out 

candidate neoantigens that do not meet a specified gene expression threshold 32. Our results 
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indicate that the value of antigen expression levels has potentially been underestimated, and rather 

than using expression as a filtering step, it might be used in combination with HLA binding 

predictions to more efficiently identify neoantigens. 

As TPM values estimate the expression of a gene, we first presumed that in the case of 

neoantigens, tumor_rna_alt_reads would be a better predictor than TPM as this metric specifically 

describes the expression of mutated transcripts. However, the predictive performance of these 

metrics alone was the same and when we used these metrics in our model, the model using 

TCGA_TPM clearly outperformed the model using tumor_rna_alt_reads. One reason for this 

might be that we trained our model using TPM values of source proteins of eluted ligands and the 

parameters would have been fitted differently when trained with a neoantigen specific dataset 

using tumor_rna_alt_reads. However, neoantigen datasets that provide expression details are still 

limited and we are unfortunately not able to further explore this approach at this point. Another 

complication with using tumor_rna_alt_reads to estimate the expression of mutated transcripts is 

that this metric directly counts the RNA-seq reads that support the mutation and is, in contrast to 

TPM, not normalized considering the total number of mapped reads. As more datasets become 

available, we will further explore how to best specifically estimate the abundance of mutated 

transcripts. 

Due to time or financial limitations and given the many challenges of obtaining, preserving 

and sequencing RNA samples, RNA-Seq data is often not available in a clinical setting. Here, we 

have shown that expression data publicly available from TCGA can be used to effectively estimate 

patient-specific gene expression values. We have included TCGA expression values for 35 

different cancer types in the current implementation of AXEL-F and plan to extend the available 

expression datasets to cell lines and different cell types. 
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Many factors during an RNA-Seq experiment can have an effect on gene expression and 

thus on the TPM of a specific gene. In our model we introduced the parameter minTPM to 

accurately capture lowly expressed transcripts. This was necessary because RNA-Seq has a 

detection limit and additional bias is imposed by only working with a single RNA-Seq sample, as 

it is mostly not feasible to generate biological and technical replicates in a clinical setting. The 

optimal value we obtained for minTPM was 0.567, indicating that every transcript that generated 

a ligand should have been expressed at least with a TPM of 0.567 at some point in the cell cycle. 

Biologically speaking, there is no definitive minimum TPM value above which a gene can be 

considered expressed. Technically speaking however, a TPM cutoff is often utilized to select genes 

that are considered expressed. The EMBL-EBI Expression Atlas for example, uses a default 

minimum expression level of 0.5 TPM 33. This value is very close to the minTPM value that our 

training determined and thus supports the biological relevance of this value. 

How the interplay between source antigen expression and peptide-MCH binding can be 

utilized to more efficiently predict viral epitopes remains an open question. During infection, 

viruses hijack host cells to express genes necessary for virus propagation. Which genes are 

expressed and at what level depends on several factors 34. The kinetics of the viral infection play 

an important role as different genes are expressed during different stages of the viral infection 35, 

and importantly, many viruses subvert the MHC processing and presentation pathway at later 

stages of the infection. Hence, to include source antigen expression data for viral epitope prediction 

it would be necessary to know the kinetic class of the antigen of interest. The genes in each kinetic 

class, however, are different for each viral family and are not well known for many viruses. 

Additionally, viral gene expression varies significantly among genetically identical cells and the 
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source of these variations is still not well understood 34, 36. Given these complications in capturing 

viral gene expression, AXEL-F is currently not suitable to predict viral epitopes. 

Finally, we did not address prediction of MHC class II restricted epitopes presented to 

CD4+ T cell, which play an important role in autoimmunity and antitumor immunity. While MHC 

class I binding peptides are mainly derived from endogenous proteins, peptides binding MHC class 

II are mainly derived from extracellular proteins. Our model needs to be adjusted to describe the 

MHC class II antigen presentation pathway, and the cellular location of the source antigen might 

be one variable to consider. Unfortunately, the quality of eluted ligands from MHC class II is still 

lacking as ligand elution experiments from MHC class II are more complex when compared to 

MHC class I. Due to the open binding groove of MHC class II, ligands are variable in length and 

it is difficult to deconvolute multi-allelic ligand data. Recently, more computational methods to 

accurately deconvolute multi-allelic ligand data are becoming available 37 38, 39 and also more 

ligands eluted from mono-allelic cell lines are being published. This will help to retrieve quality 

datasets that we can use to train a model for MHC class II presentation. 

Taken together, we have, to our knowledge, for the first time developed a biophysically 

motivated model to combine peptide-MHC binding and abundance of the peptide’s source protein 

to improve epitope predictions. AXEL-F is freely available and should be useful for predicting and 

selecting epitopes more efficiently.  
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MATERIALS AND METHODS 

Training Dataset 

For our initial analysis and as the training set for model development, we used a previously 

published dataset of 15,090 HLA class I ligands eluted from five different HLA class I alleles: 

HLA-A*01:01, HLA-A*02:01, HLA-A*24:02, HLA-B*07:02, and HLA-B*51:01 26.  We 

downloaded this dataset from the IEDB under the accession number 1000685 

(http://www.iedb.org/subID/1000685).  The length of the ligands in this set ranged from 8 to 14 

residues. Eluted ligands were retrieved from 4,831 different source proteins for which UniProt 

identifiers were also provided. 

As expression data was not included in the Trolle study, we retrieved expression data of 

HeLa cells from another previously published study 27. We downloaded raw read data from the 

Gene Expression Omnibus database under accession number GSM3899456 and used an in-house 

pipeline to process the raw RNA-Seq data and calculate gene expression as transcripts per million 

(TPM).  

 

Validation dataset of eluted ligands 

We retrieved a second dataset of eluted ligands to validate our findings 22. The dataset was 

provided as Supplementary tables and contained 26,089 eluted ligands from 16 HLA class alleles: 

HLA-A*01:01, HLA-A*02:01, HLA-A*02:03, HLA-A*02:04, HLA-A*02:07, HLA-A*03:01, 

HLA-A*24:02, HLA-A*29:02, HLA-A*31:01, HLA-A*68:02, HLA-B*35:01, HLA-B*44:02, 

HLA-B*44:03, HLA-B*51:01, HLA-B*54:01, and HLA-B*57:01. Abelin et al also performed 

RNA-Seq and provided the data in the form of TPM values from four cell lines (GSE93315). We 

averaged TPM values from those four cell lines. 
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Background data generation 

To compare the set of eluted ligands against, we generated sets of random background peptides. 

For each peptide in the training or validation dataset, 10 peptides were randomly picked from the 

human proteome. The lengths of the random peptides and the assignment of HLA class I alleles 

were chosen in a way that the total number of background peptides was uniformly distributed 

across all alleles and peptide lengths. 

 

Dataset of validated immunogenic neoantigens 

We used data from a previously published study by Parkhurst et al 30 that reported immunogenicity 

screening results of neoantigens from 75 patients with various gastrointestinal cancers. The group 

performed whole-exome sequencing to detect somatic mutations, transfected autologous dendritic 

cells with tandem minigenes encoding these mutations, and determined which neoantigens were 

recognized by tumor-infiltrating-lymphocyte cultures 30. The results were provided as a 

supplemental table to the study, listing all tested neoantigens and corresponding screening results 

(CD4+ and/or CD8+ or negative, (Supplementary 3 in 30).  

The peptides provided in this dataset were mainly 29mer peptides with the mutated residue 

located in the center of the peptide. When performing NetMHCpan predictions, we considered all 

contained 8-12mer peptides and all HLA class I alleles provided for the corresponding patient. For 

each peptide we then assigned the best IC50 and the best EL_rank predictions among all its k-mer 

and HLA combinations.  

 

TCGA Analysis 
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We downloaded pre-calculated TPM values for the TCGA Pan-cancer cohort from UCSC 

Xena datapages 40. For each of the 35 cancer types included, we calculated the median expression 

for each gene across all samples. We utilized in-house RNA-Seq data of 25 patients with 9 different 

cancer to analyze how well patient-specific gene expression can be estimated by using the gene 

expression data obtained from TCGA. For each patient from our in-house cohort, we matched the 

TPM from in-house RNA-Seq with the calculated cancer type specific median TPM values from 

TCGA. We then analyzed, how well TCGA median TPM values correlated with patient-specific 

TPM values. 

 

HLA class I Binding Predictions 

NetMHCpan version 4.0 as hosted on the IEDB Analysis Resource (IEDB-AR) was used to 

perform binding predictions 17, 31.  

 

Transforming EL_Rank to IC50 values 

EL_Score and EL_Rank are output values of the neural networks the NetMHCpan method consists 

of. These values are abstract and cannot be directly used in the biological context of our model 

like IC50. We therefore translated the EL_Rank values to IC50 values by comparing the percentile 

ranks of the two metrics in the Trolle dataset.  To do so, we first calculated the global percentile 

rank of each IC50 value within the Trolle set. We then defined an interpolation function that maps 

each of these percentile ranks to the corresponding IC50 value. This interpolation function was 

then used to map each EL_Rank to IC50 values to obtain our new metric EL_to_IC50. The same 

interpolation function based in the Trolle dataset was used to calculate AXEL-F scores for the 

validation datasets Abelin and NCI and the function is implemented as part of the AXEL-F method. 
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Performance evaluation 

The R package pROC was used for performing ROC analysis and calculating AUC and pAUC 

values, packages plotROC and ggplot 2 were used to plot ROC curves. 

 

Model Training 

We used the R function optim that implements an optimization method based on Nelder–Mead. 

The paramters α, minTPM and kT were fitted to maximize the AUC value for predicting eluted 

ligands in the Trolle dataset. To avoid overfitting, we performed 5-fold-cross-validation: the 

dataset was split randomly into 5 parts using R package caret, the optimization was performed on 

4/5 of the data  and tested on the remaining 1/5 of the data. This was done 10 times and the median 

of the fitted parameters were used for α, minTPM and kT. 
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