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Abstract

Discovery of discontinuous B-cell epitopes is a major challenge in vaccine design. Previous epitope
prediction methods have mostly been based on protein sequences and are not very effective. Here, we
present DiscoTope, a novel method for discontinuous epitope prediction that uses protein three-
dimensional structural data. The method is based on amino acid statistics, spatial information, and
surface accessibility in a compiled data set of discontinuous epitopes determined by X-ray crystallog-
raphy of antibody/antigen protein complexes. DiscoTope is the first method to focus explicitly on
discontinuous epitopes. We show that the new structure-based method has a better performance for
predicting residues of discontinuous epitopes than methods based solely on sequence information, and
that it can successfully predict epitope residues that have been identified by different techniques.
DiscoTope detects 15.5% of residues located in discontinuous epitopes with a specificity of 95%. At this
level of specificity, the conventional Parker hydrophilicity scale for predicting linear B-cell epitopes
identifies only 11.0% of residues located in discontinuous epitopes. Predictions by the DiscoTope
method can guide experimental epitope mapping in both rational vaccine design and development of
diagnostic tools, and may lead to more efficient epitope identification.

Keywords: discontinuous epitopes; B-cell epitope; antibody; vaccine design; protein structure; antigen;

accessibility; hydrophilicity

A major task in vaccine design is to select and design
proteins containing antibody-binding epitopes (B-cell
epitopes) able to induce an efficient immune response.
The selection can be aided by epitope prediction in
relevant proteins or regions of proteins. In addition,
prediction of B-cell epitopes may help to identify epi-
topes in proteins that have been analyzed using experimen-
tal techniques based on antibody affinity binding, e.g.,
Western blotting, immunohistochemistry, radioimmuno-
assay (RIA), and enzyme-linked immunosorbent assay
(ELISA).

Most existing methods for prediction of B-cell epitopes
exclusively use protein sequences as input, and are best
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suited to predict epitopes composed of a continuous
stretch of amino acids (linear epitopes) (Hopp and Woods
1981; Parker et al. 1986; Jameson and Wolf 1988; Debelle
et al. 1992; Maksyutov and Zagrebelnaya 1993; Alix
1999; Odorico and Pellequer 2003). In general, these
methods are based on prediction of hydrophilicity, flex-
ibility, B-turns, and surface accessibility using a number
of amino acid propensity scales. A large amount of data
exists on linear epitopes (Leitner et al. 2003; Saha et al.
2005; Toseland et al. 2005), since the annotation can be
done by measuring the binding of antigen peptide frag-
ments to antibodies. However, this method of annotation
may lead to annotation errors, because a peptide can
specifically bind an antibody even if some residues of the
peptide are not interacting with the antibody. Predicting
linear epitopes is still a nontrivial task, and the obtainable
prediction accuracy is quite poor (Van Regenmortel and
Pellequer 1994; Van Regenmortel 1996; Blythe and
Flower 2005). However, combination of a hidden Markov
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model and a hydrophilicity scale constructed by Parker
et al. (1986) has recently lead to some improvement in
linear B-cell epitope prediction (Larsen et al. 2000).

It has been estimated that >90% of B-cell epitopes are
discontinuous, i.e., consist of segments that are distantly
separated in the pathogen protein sequence and brought
into proximity by the folding of the protein (Barlow et al.
1986; Van Regenmortel 1996). Identification of discon-
tinuous epitopes is difficult, since the complete analysis
must be done in context of the native antigen structure.
The most informative and accurate method for identi-
fication of discontinuous epitopes is determination of
structures of antigen—antibody complexes by X-ray crys-
tallography (Fleury et al. 2000; Mirza et al. 2000). The
use of discontinuous epitopes derived from presently
available X-ray structures is complicated by two major
problems: First, the available data on discontinuous
epitopes in different antigens is much reduced compared
to linear epitopes; second, very few antigens have been
studied to completely identify various discontinuous
epitopes in the same antigen. The existence of undetected
epitopes that are not identified in the data set can make it
harder to develop good prediction algorithms because
they influence the measured performance. However,
detailed structural knowledge on antibody—antigen com-
plexes is growing, and allows for broader analysis of
discontinuous epitopes in various antigens and develop-
ment of better prediction methods.

Correlation between surface exposure and B-cell epi-
topes has been known for many years (Novotny et al.
1986; Thornton et al. 1986). Recently, two new methods
using protein structure and surface exposure for pre-
diction of B-cell epitopes have been published (Kulkarni-
Kale et al. 2005; Batori et al. 2006). However, none of
these new methods using protein structure as input have the
primary focus on discontinuous epitopes.

Here, we present a prediction method for residues
located in discontinuous B-cell epitopes. DiscoTope uses
a combination of amino acid statistics, spatial informa-
tion, and surface exposure. It is trained on a compiled
data set of discontinuous epitopes from 76 X-ray struc-
tures of antibody/antigen protein complexes. We present
the performance of DiscoTope compared to the Parker
hydrophilicity scale (Parker et al. 1986) for a comparison
to a classical, sequence-based method that has been
shown recently to perform well for prediction of linear
epitopes (Larsen et al. 2006). In addition, we compare the
performance with predictions based on surface accessi-
bility measured on antigen structures using the program
NACCESS (Hubbard and Thornton 1993). We demon-
strate that DiscoTope is generally the best performing
of all methods described here. Finally, we present the
delineation of epitopes in the malaria protein apical
membrane antigen 1 (AMA1) where DiscoTope success-

fully predicts epitope residues that have been identified
using either various experimental or sequence analysis
techniques.

Results

Properties of discontinuous B-cell epitopes

In order to get a well-established basis for development
and evaluation of the prediction method, we compiled
a discontinuous epitope data set from 76 X-ray structures
of complexes between antibodies and protein antigens.
We analyzed the data set to find distributions for the
number of residues per epitope, the number of residues
per sequential stretch in epitopes, and the longest se-
quential stretch per epitope. These distributions are
shown in Figure 1. The total number of residues per
epitope ranged from 9 to 22, and >60% of the epitopes
consisted of 14 to 19 residues (Fig. 1A). Segments with
a single epitope residue represented >45% of the 528
segments in the data set (Fig. 1B). The longest sequential
stretch of identified residues per epitope ranged between
3 and 12 residues, and >75% of epitopes comprised a
sequential stretch of a maximum length of 4 to 7 residues
(Fig. 1C). These findings confirm that most epitopes in
the data set are indeed discontinuous, and composed by
small parts of the antigen sequence forming a binding
region for the antibody.

The data set was analyzed with respect to surface
exposure by determining the number of intramolecular
Ca atom contacts for each residue (Fig. 2). A low contact
number correlates with localization close to the surface or
in protruding regions of antigen structures. A r-test
showed that residues identified as part of epitopes in
the data set had significantly lower numbers of contacts
compared to the nonepitope residues (P < 10°). The
average number of contacts and standard error of mean
for epitope residues was 15.7 = 0.12, and for nonepitope
residues the average contact number and standard error of
mean was 19.2 = 0.05 (see Fig. 2, vertical lines). The
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Figure 1. Analysis of the complete data set of discontinuous B-cell
epitopes. (A) Distribution of the number of residues per epitope. (B)
Distribution of the number of residues per sequential stretch of epitopes.

(C) Distribution of the maximum length of a sequential stretch per epitope.
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Figure 2. Contact numbers of epitope residues in the data set compared to
nonepitope residues. The curves show the distribution of contact numbers
for epitope residues (red curve) compared to nonepitope residues (black
curve). The vertical lines represent the mean value of contact numbers for
the epitope residues (red line) and for the nonepitope residues (black line).

finding that epitopes are in exposed or protruding regions
is in agreement with previous analysis of B-cell epitopes
(Novotny et al. 1986; Thornton et al. 1986). As shown in
Figure 2, the two distributions are overlapping. This is
most probably caused by the incomplete annotation of the
data set or because other factors than contact numbers are
important in defining an epitope.

For the development and evaluation of prediction
methods, the 76 antigens in the data set were grouped
into 25 nonhomologous groups (for more details, see
Materials and Methods). From these 25 groups, five sets
(of five groups each) were constructed and used for
fivefold cross-validated training and evaluation, to avoid
optimizing and evaluating on similar antigens.

Log-odds ratios calculated from the epitope data set

We analyzed the statistics of amino acids in epitopes and
nonepitopes of the data set by calculation of log-odds
ratios from peptides of the data set. A peptide-based
approach of similarity reduction was chosen to avoid
skewing log-odds ratios toward highly redundant epitopes
in the data set. Peptides with high similarity in the data
set were weighted lower than peptides with low similarity,
and therefore, the length of the peptides played an
important role in the derivation of log-odds ratios. We
used raw log-odds ratios as epitope propensities for
prediction of epitopes in the training sets and found
a peptide length of nine residues to be optimal.

Table 1 shows epitope log-odds ratios calculated from
homology-reduced peptides of the total data set of 76
proteins. Of the 20 amino acids, asparagine (N), arginine
(R), proline (P), and lysine (K) had the highest log-odds
ratios, meaning that they are overrepresented in epitopes
compared to nonepitopes of the data set. Cysteine (C),
alanine (A), leucine (L), valine (V), and phenylalanine
(F) had very low log-odds ratios, and are correspondingly
underrepresented in epitopes. Interestingly, we found
several discrepancies between the Parker hydrophilicity
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scale and the log-odds ratios (Table 1). For example, the
most hydrophobic residue, tryptophan (W), did not have
a particularly low log-odds ratio. The most hydrophilic
residues, aspartate (D) and glutamate (E), had relatively
moderate log-odds ratios. Arginine (R) and proline (P)
had some of the highest log-odds ratios, but are ranked
close to the middle of the Parker hydrophilicity scale.
Cysteine (C) and alanine (A) are ranked close to the
middle of the Parker scale, but had some of the lowest
log-odds ratios.

Evaluation of uncombined methods for B-cell
epitope prediction

To test the predictive strength of contact numbers and the
epitope propensity scale of log-odds ratios on discontin-
uous epitopes, we used the area under receiver operator
curves (AUC) averages over different evaluation sets (see
details in Materials and Methods). We additionally tested
a sequential average of log-odds ratios as prediction score
similar to the approach recommended for the hydrophi-
licity scale by Parker et al. (1986). The optimal window
size for sequential averaging of log-odds ratios was found
to be nine residues based on the predictive performance
on the training sets (data not shown).

We found that the epitope log-odds ratios used with
sequential averaging performed better than the sequen-
tially averaged Parker hydrophilicity scale on the discon-
tinuous epitopes (Fig. 3A). The raw epitope log-odds

Table 1. The Parker hydrophilicity scale and epitope
log-odds ratios

Amino acid Parker Log-odds ratios
D 2.460 0.691
E 1.860 0.346
N 1.640 1.242
S 1.500 —0.145
Q 1.370 1.082
G 1.280 0.189
K 1.260 1.136
T 1.150 —0.233
R 0.870 1.180
P 0.300 1.164
H 0.300 1.098
C 0.110 —3.519
A 0.030 —1.522
Y —0.780 0.030
\% —1.270 —1.474
M —1.410 0.273
I —2.450 —0.713
F —2.780 —1.147
L —2.870 —1.836
w —3.000 —0.064

Amino acids are listed with descending hydrophilicity using the values of
the Parker scale.
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propensity scale gave an average performance of 0.604 on
the evaluation sets. Smoothing of the log-odds ratios
using a sequential average of nine residues improved the
performance to 0.636. The Parker scale was used with
a smoothing window of seven residues and had a perfor-
mance of 0.614. Compared to the methods based on
propensity scales, the methods based on contact numbers
and NACCESS relative surface area (RSA) values had
considerably higher performances of 0.647 and 0.673,
respectively (Fig. 3A).

Combination methods for epitope prediction

We additionally tested the prediction of epitope residues
using surface localization values based on contact num-
bers or NACCESS RSAs in combination with epitope log-
odds ratios or the Parker hydrophilicity scale. One
combination approach was to use a sum of weighted
prediction scores from surface localization measures and
methods based on sequential information (log-odds ratios
or hydrophilicity scores). A second approach was tested
by summing log-odds ratios, sequentially averaged log-
odds ratios or Parker scale scores of residues in spatial
proximity and adding the contact numbers to give a
prediction score. For each combination, we estimated
the relative weight on the surface localization score by
optimizing the predictive performance on the training sets
measured in average AUC. The optimized weights are
listed in Table 2.

The predictive performances of the combination meth-
ods were tested by calculating the average AUC from
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Figure 3. Evaluation of B-cell epitope prediction methods. The average
AUC of various methods on the five evaluation sets. ““Log e-ne” denotes
raw log-odds ratios; ‘“Parker” denotes the Parker hydrophilicity scale;
“Win9 log e-ne” denotes the log-odds ratios used with a smoothing
window of nine residues; ‘“Contact” denotes contact numbers; and
“Naccess” denotes NACCESS RSA values. (A) The performance of single
methods. (B) The performance of simple combination methods using
contact numbers. (C) The performance of simple combination methods
using NACCESS RSA values. (D) The performance of the structural
proximity sum methods.

Table 2. Optimal weights on surface localization scores for
combination methods

Sequential average  Structural proximity sum

Win 9 Win 9
Log-odds log-odds  Parker Log-odds log-odds Parker
Contacts 1.5 0.25 1.75 —1.5 -0.5 —1.5
NACCESS 2.0 0.25 1.75 — — —

Win 9 denotes epitope log-odds ratios smoothed by a window of nine
sequential residues.

predictions on the evaluation data sets (Fig. 3B-D).
Simple linear combinations of the Parker scale, raw log-
odds ratios, and smoothed log-odds ratios with structure-
based methods (contact numbers and NACCESS RSA
values) in general improved the performance (Fig. 3B,C).
Combination methods using raw log-odds ratios had
a performance of 0.665 for the combinations with contact
numbers and 0.676 for the combination with NACCESS
RSA values. The linear combinations with the Parker
method had performances of 0.674 for the contact number
combination and 0.685 for the NACCESS RSA combi-
nation. Using a combination of smoothed log-odds ratios
combined with contact numbers yielded a performance of
0.682. The best performing method of the simple linear
combinations was the combination of smoothed log-odds
ratios with NACCESS RSAs. This method had a perfor-
mance of 0.691 on the evaluation sets.

Methods based on a combination of structural proxim-
ity sums of propensity scales with contact numbers gave
the best performances on the evaluation sets (Fig. 3D).
The performance of the structural proximity sum method
based on Parker predictive values combined with contact
numbers had a performance of 0.692. The corresponding
structural proximity sum method using raw log-odds
ratios had a performance of 0.695. The best performing
method on the evaluation data sets was the structural
proximity sum of sequentially smoothed epitope log-
odds ratios combined with contact numbers. This method
was shown to have a performance of 0.711, which is
significantly better than the method based on structural
averaging using raw log-odds ratios (P = 0.040). The
method is also significantly better than the Parker
method (P = 0.007) and marginally better than the
NACCESS RSA method (P = 0.105). We call this method
DiscoTope.

Analysis of the DiscoTope method for discontinuous B-cell
epitope prediction

We decided to further analyze the Parker hydrophilicity,
NACCESS RSA, and DiscoTope predictions to get a more
detailed comparison of the performances of the methods.
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Table 3. Sensitivity of methods corresponding to a number of selected specificity levels

DiscoTope NACCESS RSA Parker
Specificity Sensitivity Threshold Sensitivity Threshold Sensitivity Threshold
95% 15.5% -3.1 8.7% 88% 11.0% 1.07
90% 24.2% —4.7 18.9% 74% 19.6% 0.88
85% 32.3% —6.0 27,2% 67% 27.1% 0.74
80% 40.2% —6.9 37.3% 60% 36.0% 0.60
75% 47.3% =77 44.1% 55% 39.8% 0.50

Residues with a prediction value above the thresholds were predicted as parts of epitopes.

A comparison of the sensitivity of the three methods was
done based on a number of selected specificities (Table
3). In Table 3, we have additionally listed prediction
threshold values to facilitate general use of all three
methods for B-cell epitope prediction. For all five
specificity levels, DiscoTope had the highest sensitivity
of the three methods. At a level of 95% specificity (which
means only 5% false positive predictions) DiscoTope
detected 15% of the epitopes. The Parker method had
higher sensitivity than the NACCESS RSA method for the
95% and 90% specificity levels. This is in contrast to the
averaged AUC value on the five evaluation sets, which
was found to be higher for the NACCESS method than for
the Parker method (Fig. 3A).

In order to analyze the performances of the three
methods on different groups of antigens, we compared
prediction AUC values for each of the 25 nonhomologous
antigen groups (Fig. 4). For the majority of the groups of
antigens in the data set, the DiscoTope method had
a better performance than the Parker method (Fig. 4A).
However, in eight groups of antigens the epitope residues
were more accurately predicted using the Parker method.
The same tendency was observed for the NACCESS RSA
method, where the Parker method performed best for 12
groups (Fig. 4B). Comparison of the DiscoTope and
NACCESS RSA methods showed that, even though the
average AUC value for the 25 groups was highest for the
DiscoTope method, the NACCESS RSA method per-
formed best for 10 of the antigen groups (Fig. 4C). We
found that the DiscoTope and the NACCESS RSA
methods had six groups in common for which the Parker
method performed best. These groups were represented
by the PDB antigen entries 1JPS, 2JEL, 1TQB, 1ARI,
10AZ, 1EOS8. The fact that both surface accessibility
based methods had lower performance than the Parker
scale method suggests that the measured surface accessi-
bility for single antigen chains is not sufficient for epitope
prediction in all types of antigens. Three of the six groups
(represented by antigens 1JPS, 1AR1, and 1EO8) con-
tained antigens that have elongated structures. Further-
more, antigens of 1JPS, 1AR1, and 1EOS are all known as
subunits of larger biological complexes associated with
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membranes (Ostermeier et al. 1997; Fleury et al. 2000;
Faelber et al. 2001). Perhaps not surprising, the single
antigen chain approach taken by the DiscoTope method
clearly could not correctly measure the surface accessi-
bility of all residues in such proteins. For an example, the
structure of the antigen of 1AR1 is shown in Figure 5. On
the plot, most of the residues in the antigen that had the
lowest contact numbers are not in proximity of the
epitope (Fig. 5A,B). In fact, only one residue of the
epitope was among the 30% residues in the antigen with
lowest contact numbers. The antigen of 1AR1 is a subunit
of a membrane spanning cytochrome c¢ oxidase (Fig. 5C)
and the largest continuous region of residues with low
contact numbers corresponds to a region of the protein
that is described as membrane-spanning (Ostermeier et al.
1997).

Prediction of B-cell epitope residues in apical membrane
antigen 1

To evaluate our method on B-cell epitopes that
are mapped using other types of methods than X-ray
crystallography we tested the predictions of DiscoTope
on the structure of the ectodomain from AMAI1 (Bai et al.
2005; Pizarro et al. 2005). No AMAIL epitopes are
included in the data set of discontinuous epitopes derived
from the PDB. However, two separate epitopes recog-
nized by monoclonal antibodies MablF9 and Mab4G2
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Figure 4. Dot plots showing comparisons of performances of the Parker
method, the NACCESS RSA method, and the DiscoTope method. Circles
indicate average AUC per group showed for the 25 groups of different
antigens. The dotted lines indicate points where the methods perform
equally.
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Figure 5. Structure of the 1ARI antigen. The antigen is a subunit of the
cytochrome ¢ oxidase (Ostermeier et al. 1997). (A) The 30% of residues
with lowest contact numbers are shown in green. In red is shown a residue
that is part of the 30% with lowest contact numbers and of the epitope from
the data set. The rest of the epitope is shown in blue. (B) The structure
mentioned above and rotated 90 degrees. (C) The complex of the
cytochrome ¢ oxidase with antibody fragments. The 1ARI antigen is
color coded as in A and B. Antibody fragments are shown in light blue. The
other subunit of the cytochrome ¢ oxidase is shown in yellow. Membrane
spanning helices of the 1ARI antigen are part of the lower half of the
structure.

have been experimentally mapped on the AMA1 ectodo-
main: The MablF9 epitope was mapped using phage-
display of peptides and point mutations of E197 (Coley et
al. 20006); the discontinuous Mab4G?2 epitope was mapped
in detail by point mutation of nine residues (Pizarro et al.
2005). In addition, Bai et al. (2005) have classified five
residues (including E197 and other residues in the same
region of the structure) as highly polymorphic in Plas-
modium falciparum AMA]1 sequences. It has been sug-
gested that the polymorphism is caused by selection
pressure on the antigen to avoid the host immune system.
We used a DiscoTope prediction threshold of —4.7, which
corresponds to a specificity of 90% and 24% sensitivity
(Table 3). In AMAI, 43 of 311 residues were predicted as
epitope residues. Most of the predicted epitope residues
cluster in three separate regions of the AMAI structure
(Fig. 6). DiscoTope successfully identified two of the
eight residues in the 1F9 epitope that were mapped using
phage-display (D196 and E197). In the discontinuous
4G2 epitope, all nine residues except D348 were pre-
dicted to be part of epitopes. All of the five highly
polymorphic residues described by Bai et al. (2005) were
predicted to be located in epitopes. Thus, DiscoTope
successfully predicted epitope residues of AMAI1 that
have been mapped by using diverse methods.

Discussion

In this paper, we present DiscoTope, a novel method for
prediction of residues located in discontinuous B-cell
epitopes. DiscoTope combines surface localization and
spatial properties of a protein structure with a novel

epitope propensity scale. The combination is defined in
terms of a simple weighted sum of the contact number
and a sum of sequentially averaged epitope log-odds
ratios of spatially proximate residues. We propose to use
DiscoTope for prediction of discontinuous epitope resi-
dues for several reasons. First, we have shown on a data
set of discontinuous epitopes that the average predictive
performance of the DiscoTope is significantly higher than
the Parker propensity scale and marginally higher than
the surface localization score defined by the NACCESS
RSA score. Second, we have shown that DiscoTope correctly
predicts residues in epitopes that have been identified using
different techniques such as phage-display, point mutation,
and sequence analysis. Third, the DiscoTope prediction
method is publicly available on www.cbs.dtu.dk/services/
DiscoTope, and the output of the method is easily interpreted.

The Parker hydrophilicity scale is often used for pre-
diction of linear B-cell epitopes by smoothing values in
a seven-residue window (Parker et al. 1986). Compared to
the epitope log-odds ratios smoothed over a window of
nine residues developed here, the Parker scale was not as
accurate for prediction of discontinuous B-cell epitopes
in the data set. The difference in ranking between the two
scales suggests that our log-odds ratios represent more
characteristics of the epitopes than only hydrophilicity.
Possibly, this difference contributes to a better predictive
performance on the data set since combinations of various
propensity scales including hydrophilicity, flexibility,
accessibility, and B-turn prediction are better than single
propensity scales for epitope prediction (Pellequer et al.
1991). Our findings, that surface accessibility values
improved the prediction of residues in B-cell epitopes,
are in agreement with recently reported results by Batori
et al. (2006). In addition, the combination of propensity

Figure 6. Predicted epitope residues of the AMA1 ectodomain. Backbone
atoms of residues predicted by DiscoTope as parts of epitopes are
highlighted in green. Side chains of the residues mapped to the monoclonal
antibodies 1F9 and 4G2 are shown in black.

2563

www.proteinscience.org



Andersen et al.

scale methods with structural information improved the
performance considerably. This suggests that both acces-
sibility and chemical characteristics are important in
descriptors of discontinuous B-cell epitopes. Combina-
tion methods using a number of propensity scales have
been used for B-cell epitopes for more than 15 years
(Pellequer et al. 1991); however, DiscoTope is the
first reported method combining a propensity scale with
three-dimensional structural information, such as spatial
proximity.

Van Regenmortel (1996) has addressed the problem of
using protein sequences for prediction of B-cell epitopes,
which are in reality multidimensional. He concluded that
more input data, such as the antigen three-dimensional
structure, is needed for accurate prediction. The require-
ment of structural input for B-cell epitope prediction is
a limiting factor for the general use of the method.
However, structural genomics projects help to increase
the number of X-ray crystallography structures determined
of proteins in general, and to cover larger areas of the
structure space. Therefore, the requirement of pro-
tein structures as input for prediction methods will become
a decreasing problem, because more structures will be
determined and better homology models can be obtained.

In general, methods based on structural information were
shown to predict residues in discontinuous B-cell epitopes
with a higher performance measured in average AUC than
propensity scale methods, which only used sequential in-
formation. In all methods of evaluation, the DiscoTope
method was shown to have the highest performance.
However, we found that the Parker hydrophilicity scale
had a higher sensitivity than the NACCESS RSA method
on the 95% and 90% specificity levels. These results
illustrate the importance of using other measures of perfor-
mance for evaluation in addition to the AUC.

We found that for antigen groups that contain antigens
that are part of larger biological complexes, the perform-
ances of both the NACCESS RSA method and the
DiscoTope method were relatively low. The low perform-
ances were due to an incorrect measure of surface
accessibility of regions that are part of protein—protein
interaction sites or are embedded in a membrane. There-
fore, we believe that the outcome of prediction meth-
ods for B-cell epitopes should be combined with
additional information about properties such as bio-
logical complex formation, membrane interaction, and
glycosylation.

The accuracy of the described methods for B-cell
epitope prediction was still relatively moderate. This
may partly be caused by the incomplete identification
of epitopes in the antigens of the data set. If the methods
correctly predicted an epitope that was not bound by the
antibody in the corresponding complex PDB file it
counted as a false positive. However, since the same data
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set was used in the evaluation of all methods described
here, we assumed that incomplete identification had the
same influence on the predictive performance of all
methods, and hence, negligible influence on their relative
ranking. The predictive performance of the method
developed by Batori et al. (2006) was evaluated on six
epitopes of one single antigen. This evaluation approach,
using an antigen where all epitopes are more completely
identified, possibly had the effect that the false positive
proportion was lower and the measured performance was
higher. In our approach of evaluation, we chose to include
as much variation as possible and thereby avoid biasing
the method toward a certain type of antigen or epitope.
However, a future evaluation of our DiscoTope method
using a data set of antigens with more completely
identified epitopes would be of interest.

Recently, Schlessinger et al. (2006) have developed
a sophisticated method for identification of epitopes in
antibody/antigen complex structures. The method is
based on an analysis and identification of complementar-
ity determining regions (CDRs) of the antibody and
a subsequent identification of epitopes by mapping
residues in the antigen in proximity to CDRs. The
identification described in this paper was simply based
on antigen residues in proximity to antibody residues in
general, and it is plausible that a future application of the
identification method developed by Schlessinger et al.
could improve the DiscoTope method.

Because of their nonlinearity, discontinuous epitopes
pose other problems than linear epitopes in vaccine
design. Not only must the new vaccine contain the amino
acids or atoms that are necessary for binding and elici-
ting specific antibodies, but a conservation of the correct
spatial conformation is also needed. DiscoTope can
predict residues that are likely to be part of discontinuous
epitopes. Subsequently, antibody binding studies and
site-directed mutagenesis may help to group predicted
epitope residues into epitopes and validate binding.
Analysis of the local conformations of epitope residues
in the antigen structure may also aid the design of
vaccines, because a vaccine based on a discontinuous
epitope must have these conformations preserved. The
preservation may be obtained using native proteins,
subdomains of a protein, redesigned proteins carrying
the epitope, or mimotope peptides in vaccines. Therefore,
we consider discontinuous epitopes useful for rational
vaccine design.

Materials and methods

Preparation of the data set

A list of experimentally determined protein antigen—antibody
structures was obtained from the SACS database of antibody
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crystal structure information (Allcorn and Martin 2002). The list
was filtered to contain only structures determined to a resolution
<3 A with protein antigens of >25 amino acids. Coordinate files
corresponding to the filtered list were downloaded from the
Protein Data Bank (PDB, http://www.rcsb.org/pdb). The final
data set contained 76 complexes of antibody—antigen pairs.
Epitope residues in the data set were defined as antigen amino
acids having atoms within a 4 A distance from antibody atoms.
Comparisons based on a subset of five identified epitopes with
residues reported as antibody interacting (Padlan et al. 1989;
Muller et al. 1998; Fleury et al. 2000; Mirza et al. 2009; Romijn
et al. 2003) showed that a distance threshold of 4 A gave an
annotation corresponding well to that made by human experts
(92% of the epitope residues were correctly identified, and only
1% of the nonepitope residues were identified as epitope
residues). Only a single epitope was represented in each PDB
file. All other epitopes that might exist in a given antigen were
treated as nonepitopes in our analysis. Certain antigens were
represented multiple times in the data set (29 antigens are
variants of lysozyme). Therefore, we grouped the data set
according to antigen homology. Homology in the data set of
76 proteins was determined using a BLAST search (Altschul et
al. 1997) with the BLOSUMS8O0 matrix against all other antigens
in the data set combined with a homology threshold as described
by Lund et al. (1997). Antigens were then split into 25 groups
with low homology between the groups (BLAST E-values >0.30
between groups). The data set annotations and the groups of
antigens are publicly available at http://www.cbs.dtu.dk/suppl/
immunology/DiscoTope. Finally, the 25 nonhomologous groups
of antigens were divided into five data sets used for cross-
validated training and evaluation.

Use of the Parker hydrophilicity scale

The average Parker scale value over a window of seven residues
was used for the per-residue epitope prediction value as pro-
posed by Parker et al. (1986).

Definition of surface residues

A combined measure of amino acid surface localization and
structural protrusion was obtained by using residue contact
numbers. The residue contact number is the number of Ca
atoms in the antigen within a distance of 10 A of the residue Ca
atom (Nishikawa and Ooi 1980). For a more direct measure of
residue solvent accessibility, the relative solvent-accessible
surface area per residue was calculated for antigen chains
extracted from each PDB file using the NACCESS program
(Hubbard and Thornton 1993). NACCESS default options were
used with a probe radius of 1.4 A.

Performance measures

The area under a receiver operator characteristics curve (AUC)
(Swets 1988) was used as performance measure. A receiver
operator characteristics curve is constructed by varying the
prediction threshold and plotting the false-positive proportion,
or l-specificity, on the X-axis against the true positive pro-
portion, or sensitivity, on the Y-axis (Swets 1988; Lund et al.
2005). We calculate the AUC on a per protein basis. This
ensures that a prediction where all residues in a protein are
predicted as only epitopes or only nonepitopes has an AUC of

0.5 corresponding to a random prediction. The performance of
each method was measured as the average AUC, average
specificity, and average sensitivity for the 25 antigen groups.

Statistical analysis

Mean values of contact numbers for epitope residues and
nonepitope residues were analyzed using a double-sided #-test
(standard deviation = 0.121, n = 1202 for epitope residues, and
standard deviation = 0.050, n = 13,242 for nonepitope resi-
dues.) A bootstrapping approach was used for pairwise compar-
isons of the average AUC values to determine the significance of
the performances (Efron and Tibshirani 1993). For each method,
the 25 values of average AUC value per antigen group were
resampled 100,000 times in order to obtain a robust estimate of
the P-values.

Derivation of epitope log-odds ratios

Four of the five data sets (the training sets) were used for
derivation of epitope log-odds ratios. A series of peptides were
produced by sliding an odd-sized window through the sequences
of antigens in the training sets. The peptides were then sorted
into an epitope group and a nonepitope group, depending on the
identification of the residue in middle position as epitope
residue or as nonepitope residue. Weight matrices were calcu-
lated from the peptides in each group using the method de-
scribed by Nielsen et al. (2004), including sequence clustering,
sequence weighting, and pseudo counts with a weight of 200.
Finally, the log-odds ratios at the central matrix position for
each of the 20 amino acids in the epitope group relative to the
nonepitope group were calculated in half bits and used as an
epitope propensity scale.

Using log-odds ratios for epitope prediction

For prediction of epitope residues, the raw log-odds ratios were
used alone or in combination with a smoothing window
calculating the sequential average of the epitope propensity
scale values. The optimal length of peptides used for the
derivation of log-odds ratios and the optimal size of the
smoothing window were determined with respect to the pre-
dictive performance on the training sets used for calculating the
log-odds ratios. The performance reported is the fivefold cross-
validated performance on the data set. This reduces the risk of
overestimating the performance, since the calculation of the log-
odds ratios and optimization of other parameters, such as the
peptide length and the smoothing window size, are estimated on
the training set, and hence are not biased by the evaluation set
data.

Simple combinations of propensity scales with
structure-based methods

Contact numbers, NACCESS RSAs, and Parker hydrophilicity
values were normalized by subtracting the mean and dividing
with the standard deviation. The normalized contact numbers
were multiplied by —1 in order to correlate high values with
surface localization. Subsequently, the different propensity
scales were combined with contact numbers or NACCESS
RSAs using a linear combination with a weight on the surface
measure ranging from 0.001 to 100. Optimal weights were
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determined using the training sets. Finally, the performance was
evaluated on evaluation sets.

Structural proximity sum of epitope log-odds ratios

Alternatively, the epitope log-odds ratios or the Parker hydro-
philicity scale were used by summing values for all residues
with Ca atoms within a 10 A distance of each residue. We tested
a number of weighting schemes for the proximity sums, for
instance, based on the distance to the central residue, the contact
number for the residue, and a combination of the two. However,
the simple approach where all residues carry equal weight gave
the highest performance on the training sets (data not shown).

Prediction of epitopes in AMAI

Chain A of the AMAL1 ectodomain from P. falciparum (PDB
code 17Z40) was used for DiscoTope epitope prediction. We
chose to use 1Z40 instead of a full-length AMA1 ectodomain
structure (1W8K) because the main part of the residues in the
4G2 epitope was not observed in the latter. Residues 348, 351,
352, 354-356, 385, and 388-389 were counted as residues in the
4G2 epitope (Pizarro et al. 2005); residues 191-199 were
counted as part of the 1F9 epitope (Coley et al. 2006); and
residues 187, 197, 200, 230, and 243 were counted as highly
polymorphic residues (Bai et al. 2005).
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